Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nengwang Chen is active.

Publication


Featured researches published by Nengwang Chen.


Science of The Total Environment | 2012

Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China

Nengwang Chen; Jiezhong Wu; Huasheng Hong

Rain storms are predicted to increase in the subtropical region due to climate change. However, the effects of storm events on riverine nitrogen (N) dynamics are poorly understood. In this study, the riverine N dynamics and storm effects in a large subtropical river (North Jiulong River, southeastern China) were investigated through continuous sampling of two storm events which occurred in June 2010 and June 2011. The results disclosed a strong linkage between N dynamics and hydrological controls and watershed characteristics. The extreme storm in June 2010 resulted in more fluctuations in N concentrations, loads, and composition, compared with the moderate storm in June 2011. There were contrasting patterns (e.g., the hysteresis effect) between nitrate and ammonium behavior in storm runoff, reflecting their different supply source and transport mechanism. Overall, nitrate supply originated from subsurface runoff and was dominated by within-channel mobilization, while ammonium was mainly from over-land sources and flushed by surface runoff. Extreme storm runoff (2010) caused a four-fold increase in dissolved inorganic N fluxes (DIN), with a greater fraction of ammonium (up to 30% of DIN) compared with the moderate storm and background flow condition (less than 15%). Storm-driven sharp increases of N loads and changes in nutrient stoichiometry (more ammonium) might have been connected with algal blooms in the adjacent estuary and Xiamen Bay. Combined with the background flow measurement of N gradients along the main river and a stream together with anthropogenic N load information, the interactive effect of hydrological and biogeochemical process on riverine N was preliminarily revealed. Current results suggested that storm runoff N was controlled by rainfall, hydrological condition, antecedent soil moisture, spatial variability of land-based N source, and damming. These findings could be used as a reference for future water quality monitoring programs and the development of a pollution mitigation strategy.


Journal of Environmental Management | 2011

Atmospheric nitrogen deposition and its long-term dynamics in a southeast China coastal area

Nengwang Chen; Huasheng Hong; Quanjia Huang; Jiezhong Wu

Measurements were conducted during 2004-2005 and 2009-2010 to characterize atmospheric nitrogen (N) deposition to the Jiulong River Estuary - Xiamen Bay area in southeast China. Isotopic analysis and long-term data (1990-2009) for inorganic N extracted from the national acid deposition dataset were used to determine the dominant source of atmospheric nitrate and N component dynamics. The results showed that the mean dissolved total N concentration in rain water for the three coastal area sites was 2.71 ± 1.58 mg N L(-1) (n = 141) in 2004. The mean dissolved inorganic N at the Xiamen site was 1.62 ± 1.19 mg N L(-1) (n = 46) in 2004-2005 and 1.56 ± 1.39 mg N L(-1) (n = 36) in 2009-2010, although the difference is not significant, nitrate turnover dominates the N component in the latter period. Total deposition flux over Xiamen was 30 kg N ha(-1) yr(-1), of which dry and wet deposition contributed 16% and 84%, respectively. Nitrate in wet deposition with low isotopic value (between -3.05 and -7.48‰) was likely to have mostly originated from combustion NO(x) from vehicle exhausts. The inorganic N in acid deposition exhibited a significant increase (mainly for nitrate) since the mid-1990s, which is consistent with the increased gaseous concentrations of NO(x) and expanding number of automobiles in the coastal city (Xiamen). The time series of nitrate anions and ammonium cations as well as pH values during the period 1990-2009 reflected an increasing trend of N emission with potential implication for N-induced acidification.


Science of The Total Environment | 2014

Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China

Anyi Hu; Xiaoyong Yang; Nengwang Chen; Liyuan Hou; Ying Ma; Chang-Ping Yu

This study used 16S rRNA gene-based pyrosequencing (16S-pyrotag) to investigate both planktonic and benthic bacterial communities in two main tributaries (North River and West River) of the Jiulong River Watershed (JRW), a mesoscale subtropical watershed that has experienced intensive human perturbation in recent decades. The results of 16S-pyrotag showed that benthic bacterial communities were clearly more diverse and uniform than surface bacterioplankton communities. The results of taxonomic assignments indicated that Betaproteobacteria, Actinobacteria and Firmicutes were significantly more abundant in planktonic than in benthic communities, whereas the relative abundances of Acidobacteria, Delta-, Gammaproteobacteria, Chloroflexi and Nitrospira were higher in sediment than in water samples. In particular, several sewer- and fecal-pollution bacterial indicators were observed in water samples, implying that the water bodies of the JRW were contaminated by fecal pollution. Using the typical freshwater bacteria (TFB) taxonomic framework, 57.6 ± 10%, 27.6 ± 10.9% and 10.4 ± 6.9% of sequences recovered from planktonic communities could be assigned to lineages, clades and tribes of TFB, respectively. The relatively lower abundance of TFB implied that some unknown or unique autochthonous bacterioplankton populations occurred in the JRW. The principal coordinate analysis (PCoA) and one way analysis of similarity (ANOSIM) analysis demonstrated that planktonic bacterial community structures were significantly different between North River and West River, whereas benthic communities from these two tributaries were grouped together. Multivariate statistical analysis revealed that nutrient concentrations and stoichiometry were the key drivers of both α- and β-diversity patterns of bacterioplankton communities. Overall, our results indicate that the diversity, composition and structure of planktonic bacterial communities are sensitive to water chemistry (e.g., nutrient concentrations and stoichiometry) in the JRW, and therefore can serve as a good sentinel of environmental changes in this watershed.


Applied Microbiology and Biotechnology | 2016

Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes

Anyi Hu; Hongjie Wang; Jiangwei Li; Jing Liu; Nengwang Chen; Chang-Ping Yu

The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97xa0% of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49xa0% of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of β-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities.


Talanta | 2016

Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant

Shu Wang; Kunning Lin; Nengwang Chen; Dongxing Yuan; Jian Ma

Determination of nitrate in aqueous samples is an important analytical objective for environmental monitoring and assessment. Here we report the first automatic flow injection analysis (FIA) of nitrate (plus nitrite) using VCl3 as reductant instead of the well-known but toxic cadmium column for reducing nitrate to nitrite. The reduced nitrate plus the nitrite originally present in the sample react with the Griess reagent (sulfanilamide and N-1-naphthylethylenediamine dihydrochloride) under acidic condition. The resulting pink azo dye can be detected at 540 nm. The Griess reagent and VCl3 are used as a single mixed reagent solution to simplify the system. The various parameters of the FIA procedure including reagent composition, temperature, volume of the injection loop, and flow rate were carefully investigated and optimized via univariate experimental design. Under the optimized conditions, the linear range and detection limit of this method are 0-100 µM (R(2)=0.9995) and 0.1 µM, respectively. The targeted analytical range can be easily extended to higher concentrations by selecting alternative detection wavelengths or increasing flow rate. The FIA system provides a sample throughput of 20 h(-1), which is much higher than that of previously reported manual methods based on the same chemistry. National reference solutions and different kinds of aqueous samples were analyzed with our method as well as the cadmium column reduction method. The results from our method agree well with both the certified value and the results from the cadmium column reduction method (no significant difference with P=0.95). The spiked recovery varies from 89% to 108% for samples with different matrices, showing insignificant matrix interference in this method.


Marine Pollution Bulletin | 2013

Direct measurement of dissolved N2 and denitrification along a subtropical river-estuary gradient, China

Jiezhong Wu; Nengwang Chen; Huasheng Hong; Ting Lu; Longjian Wang; Zhuhong Chen

The spatial pattern and seasonal variation of denitrification were investigated during 2010-2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N₂ was directly measured by changes in the N₂:Ar ratio. The results showed that excess dissolved N₂ ranged from -9.9 to 76.4 μmol L⁻¹. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water-air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N₂ observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (E(d)=12% of [DIN]; annual N removal=24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.


Environmental Pollution | 2016

Warming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs

Xingpeng Zhou; Nengwang Chen; Zhihao Yan; Shuiwang Duan

Increases in water temperature, as a result of climate change, may influence biogeochemical cycles, sediment-water fluxes and consequently environmental sustainability. Effects of rising temperature on dynamics of nitrate, nitrite, ammonium, dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and gaseous nitrogen (N2 and N2O) were examined in a subtropical river (the Jiulong River, southeast China) by microcosm experiments. Slurry sediments and overlying water were collected from three continuous cascade reservoirs, and laboratory incubations were performed at four temperature gradients (5xa0°C, 15xa0°C, 25xa0°C and 35xa0°C). Results indicated: (1) warming considerably increased sediment ammonium, DIN and DOC fluxes to overlying water; (2) warming increased retention of nitrate, and to a lesser extent, nitrite, corresponding to increases in N2 and N2O emission; (3) DRP was retained but released from Fe/Al-P enriched sediments at high temperature (35xa0°C) due to enhanced coupled transformation of carbon and nitrogen with oxygen deficiency. Using relationships between sediment fluxes and temperature, a projected 2.3°C-warming in future would increase ammonium flux from sediment by 7.0%-16.8%, while increasing nitrate flux into sediment by 8.9%-28.6%. Moreover, substrates (e.g., grain size, carbon availability) influenced nutrient delivery and cycling across cascade reservoirs. This study highlights that warming would increase bioreactive nutrient (i.e., ammonium and phosphate) mobilization with limited gaseous N removal from sediments, consequently deteriorating water quality and increasing eutrophication with future climate change.


Journal of Geophysical Research | 2014

Natural and human influences on dissolved silica export from watershed to coast in Southeast China

Nengwang Chen; Yinqi Wu; Jiezhong Wu; Xiuli Yan; Huasheng Hong

National Natural Science Foundation of China [41076042, 41376082]; Fundamental Research Funds for the Central Universities [2012121053]; Science Foundation of Fujian Province [2010Y0064]


Chinese Journal of Oceanology and Limnology | 2014

Dynamics of phytoplankton communities in the Jiangdong Reservoir of Jiulong River, Fujian, South China

Yongqiang Tian; Bangqin Huang; Chaochao Yu; Nengwang Chen; Huasheng Hong

Phytoplankton blooms occurring in the Jiangdong Reservoir of Jiulong River, Fujian Province, South China, are a potential source of contamination of the drinking water of Xiamen (Amoy) City. To understand the main factors governing phytoplankton composition and succession, we sampled phytoplankton and measured environmental parameters in the reservoir, weekly or biweekly from Jan. 2010 to Feb. 2012. We identified 123 species of phytoplankton from 7 phyla and 74 genera. The major phyla were Chlorophyta, Bacillariophyta, Cryptophyta, Cyanophyta, and Dinophyta. The main trend in the succession of phytoplankton was from prevalence of Cryptophyta-Bacillariophyta communities to those of Chlorophyta-Cyanophyta. High cell concentrations of Cryptophyta, predominantly Komma caudate, Cryptomonas marssonii, and Cryptomonas erosa, were present in winter, associated with low river discharge and cold water. Bacillariophyta, primarily Cyclotella meneghiniana, Aulacoseira granulata, and Aulacoseira granulata var. angustissima, dominated in early spring, coinciding with high turbulence and low irradiance. During early summer and autumn, Chlorophyta, comprising Scenedesmus quadricauda, Dictyosphaerium ehrenbergianum, and Pandorina sp. were prevalent during conditions of warmer water temperatures and low turbulence. Cyanophyta, with dominance of Pseudanabaena mucicola, Merismopedia tenuissima and Raphidiopsis sp. increased throughout the summer, coinciding with higher water temperatures and lower nutrient concentrations. Dinophyta content was occasionally high during winter and summer. Peridiniopsis penardii (Dinophyta) bloomed during winter 2009, with a persistently high biomass recorded into early spring. Canonical correspondence analysis indicated that phytoplankton communities were influenced by river discharge, irradiance, water temperature, and nutrient concentrations.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2006

Assessment of management practices in a small agricultural watershed in Southeast China.

Nengwang Chen; Huasheng Hong; Wenzhi Cao; Yuzhen Zhang; Yue Zeng; Weiping Wang

In this study, an event-based agricultural non-point source pollution model (AGNPS) was calibrated and validated in an agricultural watershed in Southeast China. The AGNPS predicted runoff, peak runoff rate, nitrogen and phosphorus well matched the observed value during calibration and validation. The validated model was then applied to simulate performance of the two existed management practices and three alternative scenarios using current management practices as background losses of non-point source (NPS) pollutants. Simulations showed that the existed management practices (contour cultivation and multi-pond system) were very effective in reduction of nutrient losses. Although alternative practices, such as improved nutrient management, conversions of current orchards to woods, and their combined practices, certainly reduced the NPS pollutants from the watershed, a detailed cost-benefit analysis is necessary to select practices that could be implemented for further reduction of agricultural NPS pollutants.

Collaboration


Dive into the Nengwang Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge