Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neoma T. Boardman is active.

Publication


Featured researches published by Neoma T. Boardman.


Journal of Applied Physiology | 2011

High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart

Anne D. Hafstad; Neoma T. Boardman; Jim Lund; Martin Hagve; Ahmed M. Khalid; Ulrik Wisløff; Terje S. Larsen; Ellen Aasum

AIMS although exercise training induces hypertrophy with improved contractile function, the effect of exercise on myocardial substrate metabolism and cardiac efficiency is less clear. High intensity training has been shown to produce more profound effects on cardiovascular function and aerobic capacity than isocaloric low and moderate intensity training. The aim of the present study was to explore metabolic and mechanoenergetic changes in the heart following endurance exercise training of both high and moderate intensity. METHODS AND RESULTS C57BL/6J mice were subjected to 10 wk treadmill running, either high intensity interval training (HIT) or distance-matched moderate intensity training (MIT), where HIT led to a pronounced increase in maximal oxygen uptake. Although both modes of exercise were associated with a 10% increase in heart weight-to-body weight ratio, only HIT altered cardiac substrate utilization, as revealed by a 36% increase in glucose oxidation and a concomitant reduction in fatty acid oxidation. HIT also improved cardiac efficiency by decreasing work-independent myocardial oxygen consumption. In addition, it increased cardiac maximal mitochondrial respiratory capacity. CONCLUSION This study shows that high intensity training is required for induction of changes in cardiac substrate utilization and energetics, which may contribute to the superior effects of high compared with moderate intensity training in terms of increasing aerobic capacity.


Archives of Physiology and Biochemistry | 2007

Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice

Ole-Jakob How; Terje S. Larsen; Anne D. Hafstad; Ahmed M. Khalid; Eivind S. P. Myhre; Andrew J. Murray; Neoma T. Boardman; Mark A. Cole; Kieran Clarke; David L. Severson; Ellen Aasum

Abstract Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO2) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-γ (PPARγ) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO2 was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO2, while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARγ-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Increased O2 cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice

Neoma T. Boardman; Anne D. Hafstad; Terje S. Larsen; David L. Severson; Ellen Aasum

We have reported previously that hearts from type 2 diabetic (db/db) mice show decreased cardiac efficiency due to increased work-independent myocardial O(2) consumption (unloaded MVo(2)), indicating higher O(2) use for nonmechanical processes such as basal metabolism (MVo(2)(BM)) and excitation-contraction coupling (MVo(2)(ECC)). Although alterations in cardiac metabolism and/or Ca(2+) handling may contribute to increased energy expenditure in diabetic hearts, direct measurements of the O(2) cost for these individual processes have not been determined. In this study, we 1) validate a procedure for measuring unloaded MVo(2) directly (MVo(2)(unloaded)) and for determining MVo(2)(BM) and MVo(2)(ECC) separately in isolated perfused mouse hearts and 2) determine O(2) cost for these processes in hearts from db/db mice. Unloaded MVo(2), extrapolated from the relationship between cardiac work (measured as pressure-volume area, PVA) and MVo(2), was found to correspond with MVo(2) measured directly in unloaded retrograde perfused hearts (MVo(2)(unloaded)). MVo(2) in K(+)-arrested hearts was defined as MVo(2)(BM); the difference between MVo(2)(unloaded) and MVo(2)(BM) represented MVo(2)(ECC). This procedure was validated by demonstrating that elevations in perfusate fatty acid (FA) and/or Ca(2+) concentrations resulted in changes in either MVo(2)(BM) and/or MVo(2)(ECC). The higher MVo(2)(unloaded) in db/db mice was due to both a higher MVo(2)(BM) and MVo(2)(ECC). Elevation of glucose and insulin decreased FA oxidation and reduced both MVo(2)(unloaded) and MVo(2)(BM). In conclusion, this study provides direct evidence that MVo(2)(BM) and MVo(2)(ECC) are elevated in diabetes and that acute metabolic interventions can have a therapeutic benefit in diabetic hearts due to a MVo(2)-lowering effect.


Circulation-heart Failure | 2015

Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity

Jens Petter Bakkehaug; Anders Benjamin Kildal; Erik Torgersen Engstad; Neoma T. Boardman; Torvind Næsheim; Leif Rønning; Ellen Aasum; Terje S. Larsen; Truls Myrmel; Ole-Jakob How

Background—Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Methods and Results—Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure–volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Conclusions—Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase.


Antioxidants & Redox Signaling | 2015

How Exercise May Amend Metabolic Disturbances in Diabetic Cardiomyopathy

Anne D. Hafstad; Neoma T. Boardman; Ellen Aasum

Abstract Significance: Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. Recent Advances: Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. Critical Issues: Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. Future Directions: Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies. Antioxid. Redox Signal. 22, 1587–1605.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice

Jim Lund; Anne D. Hafstad; Neoma T. Boardman; L. Rossvoll; Natale Rolim; G. Florholmen; Håvard Attramadal; Ulrik Wisløff; Terje S. Larsen; Ellen Aasum

Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Cardioprotective effect of the PPAR ligand tetradecylthioacetic acid in type 2 diabetic mice

Ahmed M. Khalid; Anne D. Hafstad; Terje S. Larsen; David L. Severson; Neoma T. Boardman; Martin Hagve; Rolf K. Berge; Ellen Aasum

Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic (db/+) mice but also in diabetic (db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Impaired left ventricular mechanical and energetic function in mice after cardiomyocyte-specific excision of Serca2

Neoma T. Boardman; Jan Magnus Aronsen; William E. Louch; Ivar Sjaastad; Frode Willoch; Geir Christensen; Ole M. Sejersted; Ellen Aasum

Sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA)2 transports Ca2+ from the cytosol into the sarcoplasmic reticulum of cardiomyocytes and is essential for maintaining myocardial Ca2+ handling and thus the mechanical function of the heart. SERCA2 is a major ATP consumer in excitation-contraction coupling but is regarded to contribute to energetically efficient Ca2+ handling in the cardiomyocyte. Previous studies using cardiomyocyte-specific SERCA2 knockout (KO) mice have demonstrated that decreased SERCA2 activity reduces the Ca2+ transient amplitude and induces compensatory Ca2+ transport mechanisms that may lead to more inefficient Ca2+ transport. In this study, we examined the relationship between left ventricular (LV) function and myocardial O2 consumption (MVo2) in ex vivo hearts from SERCA2 KO mice to directly measure how SERCA2 elimination influences mechanical and energetic features of the heart. Ex vivo hearts from SERCA2 KO hearts developed mechanical dysfunction at 4 wk and demonstrated virtually no working capacity at 7 wk. In accordance with the reported reduction in Ca2+ transient amplitude in cardiomyocytes from SERCA2 KO mice, work-independent MVo2 was decreased due to a reduced energy cost of excitation-contraction coupling. As these hearts also showed a marked impairment in the efficiency of chemomechanical energy transduction (contractile efficiency, i.e, work-dependent MVo2), hearts from SERCA2 KO mice were found to be mechanically inefficient. This ex vivo evaluation of mechanical and energetic function in hearts from SERCA2 KO mice brings together findings from previous experimental and mathematical modeling-based studies and demonstrates that reduced SERCA2 activity not only leads to mechanical dysfunction but also to energetic dysfunction.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Chronic and acute exposure of mouse hearts to fatty acids increases oxygen cost of excitation-contraction coupling

Neoma T. Boardman; Terje S. Larsen; David L. Severson; M. Faadiel Essop; Ellen Aasum

The aim of the present study was to evaluate the underlying processes involved in the oxygen wasting induced by inotropic drugs and acute and chronic elevation of fatty acid (FA) supply, using unloaded perfused mouse hearts from normal and type 2 diabetic (db/db) mice. We found that an acute elevation of the FA supply in normal hearts, as well as a chronic (in vivo) exposure to elevated FA as in db/db hearts, increased myocardial oxygen consumption (MVo₂(unloaded)) due to increased oxygen cost for basal metabolism and for excitation-contraction (EC) coupling. Isoproterenol stimulation, on top of a high FA supply, led to an additive increase in MVo₂(unloaded), because of a further increase in oxygen cost for EC coupling. In db/db hearts, the acute elevation of FA did not further increase MVo₂. Since the elevation in the FA supply is accompanied by increased rates of myocardial FA oxidation, the present study compared MVo₂ following increased FA load versus FA oxidation rate by exposing normal hearts to normal and high FA concentration (NF and HF, respectively) and to compounds that either stimulate (GW-610742) or inhibit [dichloroacetate (DCA)] FA oxidation. While HF and NF + GW-610742 increased FA oxidation to the same extent, only HF increased MVo₂(unloaded). Although DCA counteracted the HF-induced increase in FA oxidation, DCA did not reduce MVo₂(unloaded). Thus, in normal hearts, acute FA-induced oxygen waste is 1) due to an increase in the oxygen cost for both basal metabolism and EC coupling and 2) not dependent on the myocardial FA oxidation rate per se, but on processes initiated by the presence of FAs. In diabetic hearts, chronic exposure to elevated circulating FAs leads to adaptations that afford protection against the detrimental effect of an acute FA load, suggesting different underlying mechanisms behind the increased MVo₂ following acute and chronic FA load.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load

Neoma T. Boardman; Anne D. Hafstad; Jim Lund; Line Rossvoll; Ellen Aasum

Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress.NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.

Collaboration


Dive into the Neoma T. Boardman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim Lund

University of Tromsø

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrik Wisløff

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge