Nerea Roher
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nerea Roher.
Molecular Immunology | 2010
Simon MacKenzie; Nerea Roher; Sebastian Boltaña; Frederick W. Goetz
In rainbow trout macrophages, phenol-extracted lipopolysaccharide (LPS) preparations stimulate proinflammatory cytokine gene expression but ultrapure preparations of LPS are inactive. Crude LPS preparations could potentially have a number of contaminants including peptidoglycans (PGNs), nucleic acids and lipoproteins. Thus, in the current study we individually tested potentially contaminating pathogen associated molecular patterns (PAMPs) on rainbow trout (Oncorhynchus mykiss) macrophages to determine which ones could induce proinflammatory cytokine expression. We found that PGNs derived from Gram-negative bacteria (Escherichia coli 0111:B4 and K12), are potent inducers of IL-1beta and IL-6 gene expression and were equal to, or more potent than, crude LPS. On the other hand, PGNs of Gram-positive bacteria, DNA, RNA and lipoteichoic acid were weak stimulators, and lipid A, lipoprotein (Pam3CSK4) and ultrapure LPS were nonstimulatory. More importantly, crude LPS treated with lysozyme to degrade PGNs, exhibited greatly reduced activity in stimulating IL-1beta and IL-6 gene expression, indicating that PGNs in the crude LPS are responsible for a significant amount of the proinflammatory activity. Finally, we showed that PGN treatment induces expression of COX-2 and the subsequent synthesis and release of prostaglandin E(2) (PGE(2)), an important mediator of inflammatory processes. The strong stimulatory effect of E. coli PGNs by themselves on trout macrophages suggests that the recognition of Gram-negative bacteria in trout is through PGNs in the bacterial wall, and indicates that the systems responsible for bacterial recognition in invertebrates (e.g., Drosophila) may also be conserved in some vertebrates.
PLOS ONE | 2011
Davinia Morera; Nerea Roher; Laia Ribas; Joan Carles Balasch; Carmen Doñate; Agnes Callol; Sebastian Boltaña; Steven B. Roberts; Giles Goetz; Frederick W. Goetz; Simon MacKenzie
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems.
Developmental and Comparative Immunology | 2011
Sebastian Boltaña; Nerea Roher; Frederick W. Goetz; Simon MacKenzie
Understanding the mechanisms that underpin pathogen recognition and subsequent orchestration of the immune response in fish is an area of significant importance for both basic research and management of health in aquaculture. In recent years much attention has been given to the identification of pattern recognition receptors (PRRs) in fish, however, characterisation of interactions with specific pathogen-associated molecular patterns (PAMPs) is still incomplete. Microarray studies have significantly contributed to functional studies and early descriptions of PAMP-PRR driven activation of specific response cassettes in the genome have been obtained although much is left to be done. In this review we will address gram negative (G-negative) bacterial recognition in fish addressing contributing factors such as structure-function relationships between G-negative PAMPs, current knowledge of fish PRRs and the input achieved by microarray-based studies ranging from in vivo infection studies to directed in vitro PAMP-cell studies. Finally we revisit the endotoxic recognition paradigm in fish and suggest a series of future perspectives that could contribute toward the further elucidation of G-negative bacterial recognition across the highly diverse group of vertebrates that encompass the fishes.
Chemistry: A European Journal | 2015
Angels Ruyra; Amirali Yazdi; Jordi Espín; Arnau Carné-Sánchez; Nerea Roher; Julia Lorenzo; Inhar Imaz; Daniel Maspoch
Metal-organic frameworks (MOFs) are among the most attractive porous materials available today. They have garnered much attention for their potential utility in many different areas such as gas storage, separation, catalysis, and biomedicine. However, very little is known about the possible health or environmental risks of these materials. Here, the results of toxicity studies on sixteen representative uncoated MOF nanoparticles (nanoMOFs), which were assessed for cytotoxicity to HepG2 and MCF7 cells in vitro, and for toxicity to zebrafish embryos in vivo, are reported. Interestingly, there is a strong correlation between their in vitro toxicity and their in vivo toxicity. NanoMOFs were ranked according to their respective in vivo toxicity (in terms of the amount and severity of phenotypic changes observed in the treated zebrafish embryos), which varied widely. Altogether these results show different levels of toxicity of these materials; however, leaching of solubilized metal ions plays a main role.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Sebastian Boltaña; Sonia Rey; Nerea Roher; Reynaldo Vargas; Mario Huerta; Felicity A. Huntingford; Frederick W. Goetz; Janice Moore; Pablo Garcia-Valtanen; Amparo Estepa; Simon MacKenzie
Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene–environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity–environment interactions are likely to be under strong positive selection.
Innate Immunity | 2011
Nerea Roher; Agnes Callol; Josep V. Planas; Frederick W. Goetz; Simon MacKenzie
Macrophages are phagocytes that have a central role in the organization of the immune system after an infection. These cells can recognize specific molecular components of micro-organisms (pathogen-associated molecular patterns, PAMPs) via specific receptors (PRRs) and elicit specific cellular responses. In the past, the expression of immune genes in response to different PAMPs has been characterized in different fish species. However, little is known about actual cytokine release. We characterized the secretion of tumour necrosis factor (TNF)-α in primary macrophage cultures of rainbow trout (Oncorhynchus mykiss) in response to several PAMPs by Western blot and compared this to the induction of TNF-α gene expression as well as other pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6 and anti-viral molecules such as INF-α and Mx protein (Mx). We show that lipopolysaccharide (LPS) and zymosan are major inducers of TNF-α secretion, which is not initially linked to the induction of TNF-α mRNA expression. The secretion of TNF-α, but intriguingly not the expression, is also stimulated by ultrapure LPS meaning that, in fish, contaminants of commercial LPS preparations are better inducers of the inflammatory response. Moreover, we have characterized the signaling pathways that are activated by different PAMPs and the link between those pathways and the final step of TNF-α secretion: TNF-α shedding by TNF-α converting enzyme (TACE/ ADAM17). For the first time, we show that, in fish macrophages, TNF-α is processed by TACE-like activity and this cleavage is dependent upon the activation of ERK, p38MAPK and JNK signaling pathways by LPS.
Fish & Shellfish Immunology | 2011
I. Mauri; A. Romero; L. Acerete; Simon MacKenzie; Nerea Roher; Agnes Callol; I. Cano; M.C. Alvarez; L. Tort
Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) were subjected to either experimental infection with Photobacterium damselae subsp. piscicida or Nodavirus after a period of 2 weeks of crowding in which fish were subjected to a 5-fold increase in density (10-50 kg/m(3)). Samples were obtained before the crowding period (0 h or control) and at 24h and 72 h after crowding from both groups of infected fish. The Complement haemolytic activity and the expression of the C3 gene were evaluated in blood and liver samples respectively. The bacteriolytic and lysozyme activities were also assessed. The results showed that Complement haemolytic activity was reduced at 72 h with both bacteria and virus in high density Gilthead seabream, and a similar increase was observed at low density. Bacteriolytic activity under both bacterial and viral challenges for both species was increased at 24h, under low density. At high density, the bacterial challenge did not induce significant changes. C3 mRNA abundance was substantially increased after pathogen treatments in low density groups at 24h but no significant changes were detected at high densities. These results support the idea of the suppressor effect of stressors on the immune system since a reduction of Complement activity under virus and high density, or lack of response in C3 expression under high density were observed.
Reproductive Biology and Endocrinology | 2010
Diego Crespo; Emilie Bonnet; Nerea Roher; Simon MacKenzie; Aleksei Krasnov; Frederick W. Goetz; Julien Bobe; Josep V. Planas
BackgroundThe relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta).MethodsTo determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses.ResultsLPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha.ConclusionsIn view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.
PLOS ONE | 2013
Mario Ferrer-Navarro; Raquel Planell; Daniel Yero; Elías Mongiardini; Gerard Torrent; Pol Huedo; Paula Martínez; Nerea Roher; Simon MacKenzie; Isidre Gibert; Xavier Daura
Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor.
Molecular Ecology | 2013
Sonia Rey; Sebastian Boltaña; Reynaldo Vargas; Nerea Roher; Simon MacKenzie
Resolving phenotype variation within a population in response to environmental perturbation is central to understanding biological adaptation. Relating meaningful adaptive changes at the level of the transcriptome requires the identification of processes that have a functional significance for the individual. This remains a major objective towards understanding the complex interactions between environmental demand and an individuals capacity to respond to such demands. The interpretation of such interactions and the significance of biological variation between individuals from the same or different populations remain a difficult and under‐addressed question. Here, we provide evidence that variation in gene expression between individuals in a zebrafish population can be partially resolved by a priori screening for animal personality and accounts for >9% of observed variation in the brain transcriptome. Proactive and reactive individuals within a wild‐type population exhibit consistent behavioural responses over time and context that relates to underlying differences in regulated gene networks and predicted protein–protein interactions. These differences can be mapped to distinct regions of the brain and provide a foundation towards understanding the coordination of underpinning adaptive molecular events within populations.