Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ness B. Shroff is active.

Publication


Featured researches published by Ness B. Shroff.


Computer Networks | 2003

A framework for opportunistic scheduling in wireless networks

Xin Liu; Edwin K. P. Chong; Ness B. Shroff

Abstract We present a method, called opportunistic scheduling, for exploiting the time-varying nature of the radio environment to increase the overall performance of the system under certain quality of service/fairness requirements of users. We first introduce a general framework for opportunistic scheduling, and then identify three general categories of scheduling problems under this framework. We provide optimal solutions for each of these scheduling problems. All the proposed scheduling policies are implementable online; we provide parameter estimation algorithms and implementation procedures for them. We also show how previous work by us and others directly fits into or is related to this framework. We demonstrate via simulation that opportunistic scheduling schemes result in significant performance improvement compared with non-opportunistic alternatives.


IEEE ACM Transactions on Networking | 2003

A utility-based power-control scheme in wireless cellular systems

Mingbo Xiao; Ness B. Shroff; Edwin K. P. Chong

Distributed power-control algorithms for systems with hard signal-to-interference ratio (SIR) constraints may diverge when infeasibility arises. In this paper, we present a power-control framework called utility-based power control (UBPC) by reformulating the problem using a softened SIR requirement (utility) and adding a penalty on power consumption (cost). Under this framework, the goal is to maximize the net utility, defined as utility minus cost. Although UBPC is still noncooperative and distributed in nature, some degree of cooperation emerges: a user will automatically decrease its target SIR (and may even turn off transmission) when it senses that traffic congestion is building up. This framework enables us to improve system convergence and to satisfy heterogeneous service requirements (such as delay and bit error rate) for integrated networks with both voice users and data users. Fairness, adaptiveness, and a high degree of flexibility can be achieved by properly tuning parameters in UBPC.


IEEE Transactions on Mobile Computing | 2005

A minimum cost heterogeneous sensor network with a lifetime constraint

Vivek Mhatre; Catherine Rosenberg; Daniel Kofman; Ravi R. Mazumdar; Ness B. Shroff

We consider a heterogeneous sensor network in which nodes are to be deployed over a unit area for the purpose of surveillance. An aircraft visits the area periodically and gathers data about the activity in the area from the sensor nodes. There are two types of nodes that are distributed over the area using two-dimensional homogeneous Poisson point processes; type 0 nodes with intensity (average number per unit area) /spl lambda//sub 0/ and battery energy E/sub 0/; and type 1 nodes with intensity /spl lambda//sub 1/ and battery energy E/sub 1/. Type 0 nodes do the sensing while type 1 nodes act as the cluster heads besides doing the sensing. Nodes use multihopping to communicate with their closest cluster heads. We determine them optimum node intensities (/spl lambda//sub 0/, /spl lambda//sub 1/) and node energies (E/sub 0/, E/sub 1/) that guarantee a lifetime of at least T units, while ensuring connectivity and coverage of the surveillance area with a high probability. We minimize the overall cost of the network under these constraints. Lifetime is defined as the number of successful data gathering trips (or cycles) that are possible until connectivity and/or coverage are lost. Conditions for a sharp cutoff are also taken into account, i.e., we ensure that almost all the nodes run out of energy at about the same time so that there is very little energy waste due to residual energy. We compare the results for random deployment with those of a grid deployment in which nodes are placed deterministically along grid points. We observe that in both cases /spl lambda//sub 1/ scales approximately as /spl radic/(/spl lambda//sub 0/). Our results can be directly extended to take into account unreliable nodes.


international conference on computer communications | 2005

The impact of imperfect scheduling on cross-layer rate control in wireless networks

Xiaojun Lin; Ness B. Shroff

In this paper, we study cross-layer design for rate control in multihop wireless networks. In our previous work, we have developed an optimal cross-layered rate control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal cross-layered rate control scheme has to solve a complex global optimization problem at each time, and hence is too computationally expensive for online implementation. In this paper, we study how the performance of cross-layer rate control can be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish desirable results on the performance bounds of cross-layered rate control with imperfect scheduling. Compared with a layered approach that does not design rate control and scheduling together, our cross-layered approach has provably better performance bounds, and substantially outperforms the layered approach. The insights drawn from our analyses also enable us to design a fully distributed cross-layered rate control and scheduling algorithm for a restrictive interference model.


conference on decision and control | 2004

Joint rate control and scheduling in multihop wireless networks

Xiaojun Lin; Ness B. Shroff

We study the joint problem of allocating data rates and finding a stabilizing scheduling policy in a multihop wireless network. We propose a dual optimization based approach through which the rate control problem and the scheduling problem can be decomposed. We demonstrate via both analytical and numerical results that the proposed mechanism can fully utilize the capacity of the network, maintain fairness, and improve the quality of service to the users.


acm/ieee international conference on mobile computing and networking | 2006

On the complexity of scheduling in wireless networks

Gaurav Sharma; Ravi R. Mazumdar; Ness B. Shroff

We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K -hop interference models. We define a K-hop interference model as one for which no two links within K hops can successfully transmit at the same time (Note that IEEE 802.11 DCF corresponds to a 2-hop interference model.) .For a given K, a throughput-optimal scheduler needs to solve a maximum weighted matching problem subject to the K-hop interference constraints. For K=1, the resulting problem is the classical Maximum Weighted Matching problem, that can be solved in polynomial time. However, we show that for K>1,the resulting problems are NP-Hard and cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, we show that for specific kinds of graphs, that can be used to model the underlying connectivity graph of a wide range of wireless networks, the resulting problems admit polynomial time approximation schemes. We also show that a simple greedy matching algorithm provides a constant factor approximation to the scheduling problem for all K in this case. We then show that under a setting with single-hop traffic and no rate control, the maximal scheduling policy considered in recent related works can achieve a constant fraction of the capacity region for networks whose connectivity graph can be represented using one of the above classes of graphs. These results are encouraging as they suggest that one can develop distributed algorithms to achieve near optimal throughput in case of a wide range of wireless networks.


IEEE ACM Transactions on Networking | 2006

The impact of imperfect scheduling on cross-layer congestion control in wireless networks

Xiaojun Lin; Ness B. Shroff

In this paper, we study cross-layer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal cross-layer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal cross-layer congestion control scheme has to solve a complex global optimization problem at each time, and is hence too computationally expensive for online implementation. In this paper, we study how the performance of cross-layer congestion control will be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish performance bounds of cross-layer congestion control with imperfect scheduling. Compared with a layered approach that does not design congestion control and scheduling together, our cross-layer approach has provably better performance bounds,and substantially outperforms the layered approach. The insights drawn from our analyzes also enable us to design a fully distributed cross-layer congestion control and scheduling algorithm for a restrictive interference model.


IEEE Network | 1999

Admission control for statistical QoS: theory and practice

Edward W. Knightly; Ness B. Shroff

In networks that support quality of service, an admission control algorithm determines whether or not a new traffic flow can be admitted to the network such that all users will receive their required performance. Such an algorithm is a key component of future multiservice networks because it determines the extent to which network resources are utilized and whether the promised QoS parameters are actually delivered. The goals in this article are threefold. First, we describe and classify a broad set of proposed admission control algorithms. Second, we evaluate the accuracy of these algorithms via experiments using both on-off sources and long traces of compressed video; we compare the admissible regions and QoS parameters predicted by our implementations of the algorithms with those obtained from trace-driven simulations. Finally, we identify the key aspects of an admission control algorithm necessary for achieving a high degree of accuracy and hence a high statistical multiplexing gain.


IEEE ACM Transactions on Networking | 2009

Understanding the capacity region of the Greedy maximal scheduling algorithm in multihop wireless networks

Changhee Joo; Xiaojun Lin; Ness B. Shroff

In this paper, we characterize the performance of an important class of scheduling schemes, called greedy maximal scheduling (GMS), for multihop wireless networks. While a lower bound on the throughput performance of GMS has been well known, empirical observations suggest that it is quite loose and that the performance of GMS is often close to optimal. In this paper, we provide a number of new analytic results characterizing the performance limits of GMS. We first provide an equivalent characterization of the efficiency ratio of GMS through a topological property called the local-pooling factor of the network graph. We then develop an iterative procedure to estimate the local-pooling factor under a large class of network topologies and interference models. We use these results to study the worst-case efficiency ratio of GMS on two classes of network topologies. We show how these results can be applied to tree networks to prove that GMS achieves the full capacity region in tree networks under the K-hop interference model. Then, we show that the worst-case efficiency ratio of GMS in geometric unit-disk graphs is between 1/6 and 1/3.


IEEE ACM Transactions on Networking | 2007

Asymptotically optimal energy-aware routing for multihop wireless networks with renewable energy sources

Longbi Lin; Ness B. Shroff; R. Srikant

In this paper, we develop a model to characterize the performance of multihop radio networks in the presence of energy constraints and design routing algorithms to optimally utilize the available energy. The energy model allows us to consider different types of energy sources in heterogeneous environments. The proposed algorithm is shown to achieve a competitive ratio (i.e., the ratio of the performance of any offline algorithm that has knowledge of all past and future packet arrivals to the performance of our online algorithm) that is asymptotically optimal with respect to the number of nodes in the network. The algorithm assumes no statistical information on packet arrivals and can easily be incorporated into existing routing schemes (e.g., proactive or on-demand methodologies) in a distributed fashion. Simulation results confirm that the algorithm performs very well in terms of maximizing the throughput of an energy-constrained network. Further, a new threshold-based scheme is proposed to reduce the routing overhead while incurring only minimum performance degradation.

Collaboration


Dive into the Ness B. Shroff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changhee Joo

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge