Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nestor O. Concha is active.

Publication


Featured researches published by Nestor O. Concha.


Journal of Biological Chemistry | 2000

Potent and Selective Nonpeptide Inhibitors of Caspases 3 and 7 Inhibit Apoptosis and Maintain Cell Functionality

Dennis Lee; Scott A. Long; Jerry L. Adams; George K. Chan; Kalindi Vaidya; Terry A. Francis; Kristine Kikly; James D. Winkler; Chiu-Mei Sung; Christine Debouck; Susan Richardson; Mark A. Levy; Walter E. DeWolf; Paul M. Keller; Thaddeus A. Tomaszek; Martha S. Head; M. Dominic Ryan; R. Curtis Haltiwanger; Po-Huang Liang; Cheryl A. Janson; Patrick McDevitt; Kyung Johanson; Nestor O. Concha; Winnie Chan; Sherin S. Abdel-Meguid; Alison M. Badger; Michael W. Lark; Daniel P. Nadeau; Larry J. Suva; Maxine Gowen

Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-Å resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S2 subsite, and do not bind in the caspase primary aspartic acid binding pocket (S1). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.


Journal of Medicinal Chemistry | 2008

Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase.

Dirk A. Heerding; Nelson Rhodes; Jack D. Leber; Tammy J. Clark; Richard M. Keenan; Louis Vincent Lafrance; Mei Li; Igor G. Safonov; Dennis T. Takata; Joseph W. Venslavsky; Dennis S. Yamashita; Anthony E. Choudhry; Robert A. Copeland; Zhihong Lai; Michael D. Schaber; Peter J. Tummino; Susan L. Strum; Edgar R. Wood; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Shu-Yun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Gregory L. Warren; Rakesh Kumar

Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC 50 values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3beta. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3beta phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.


Antimicrobial Agents and Chemotherapy | 2002

Identification of a Series of Tricyclic Natural Products as Potent Broad-Spectrum Inhibitors of Metallo-β-Lactamases

David J. Payne; Juan A. Hueso-Rodríguez; Helen F. Boyd; Nestor O. Concha; Cheryl A. Janson; Martin L. Gilpin; John H. Bateson; Christy Cheever; Nancy Niconovich; Stewart Pearson; Stephen Rittenhouse; David G. Tew; Emilio Diez; Paloma Perez; Jesús Ángel de la Fuente; Michael Rees; Alfonso Rivera-Sagredo

ABSTRACT This work describes the discovery and characterization of a novel series of tricyclic natural product-derived metallo-β-lactamase inhibitors. Natural product screening of the Bacillus cereus II enzyme identified an extract from a strain of Chaetomium funicola with inhibitory activity against metallo-β-lactamases. SB236050, SB238569, and SB236049 were successfully extracted and purified from this extract. The most active of these compounds was SB238569, which possessed Ki values of 79, 17, and 3.4 μM for the Bacillus cereus II, Pseudomonas aeruginosa IMP-1, and Bacteroides fragilis CfiA metallo-β-lactamases, respectively, yet none of the compounds exhibited any inhibitory activity against the Stenotrophomonas maltophilia L-1 metallo-β-lactamase (50% inhibitory concentration > 1,000 μM). The lack of activity against angiotensin-converting enzyme and serine β-lactamases demonstrated the selective nature of these compounds. The crystal structure of SB236050 complexed in the active site of CfiA has been obtained to a resolution of 2.5 Å. SB236050 exhibits key polar interactions with Lys184, Asn193, and His162 and a stacking interaction with the indole ring of Trp49 in the flap, which is in the closed conformation over the active site groove. SB236050 and SB238569 also demonstrate good antibacterial synergy with meropenem. Eight micrograms of SB236050 per ml gave rise to an eightfold drop in the MIC of meropenem for two clinical isolates of B. fragilis producing CfiA, making these strains sensitive to meropenem (MIC ≤ 4 μg/ml). Consequently, this series of metallo-β-lactamase inhibitors exhibit the most promising antibacterial synergy activity so far observed against organisms producing metallo-β-lactamases.


PLOS ONE | 2014

Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO

Anne Cleasby; Jeff Yon; Philip J. Day; Caroline Richardson; Ian J. Tickle; Pamela A. Williams; James F. Callahan; Robin Arthur Ellis Carr; Nestor O. Concha; Jeffrey K. Kerns; Hongwei Qi; Thomas D. Sweitzer; Paris Ward; Thomas G. Davies

The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.


Biochemistry | 2011

A Tale of Two Subunits: How the Neomorphic R132H IDH1 Mutation Enhances Production of αHG

Beth Pietrak; Huizhen Zhao; Hongwei Qi; Chad Quinn; Enoch Gao; Joseph G. Boyer; Nestor O. Concha; Kristin K. Brown; Chaya Duraiswami; Richard Wooster; Sharon Sweitzer; Benjamin J. Schwartz

Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.


Nature Chemical Biology | 2015

New IDH1 mutant inhibitors for treatment of acute myeloid leukemia

Ujunwa C. Okoye-Okafor; Boris Bartholdy; Jessy Cartier; Enoch Gao; Beth Pietrak; Alan R. Rendina; Cynthia M. Rominger; Chad Quinn; Angela Smallwood; Kenneth Wiggall; Alexander Joseph Reif; Stanley J. Schmidt; Hongwei Qi; Huizhen Zhao; Gerard Joberty; Maria Faelth-Savitski; Marcus Bantscheff; Gerard Drewes; Chaya Duraiswami; Pat Brady; Arthur Groy; Swathi Rao Narayanagari; Iléana Antony-Debré; Kelly Mitchell; Heng Rui Wang; Yun Ruei Kao; Maximilian Christopeit; Luis Carvajal; Laura Barreyro; Elisabeth Paietta

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Bioorganic & Medicinal Chemistry Letters | 2009

Substituted benzothiadizine inhibitors of Hepatitis C virus polymerase.

Antony N. Shaw; Rosanna Tedesco; Ramesh Bambal; Deping Chai; Nestor O. Concha; Michael G. Darcy; Dashyant Dhanak; Kevin J. Duffy; Duke M. Fitch; Adam T. Gates; Victor K. Johnston; Richard M. Keenan; Juili Lin-Goerke; Nannan Liu; Robert T. Sarisky; Kenneth Wiggall; Michael N. Zimmerman

The synthesis and optimisation of HCV NS5B polymerase inhibitors with improved potency versus the existing compound 1 is described. Substitution in the benzothiadiazine portion of the molecule, furnishing improvement in potency in the high protein Replicon assay, is highlighted, culminating in the discovery of 12h, a highly potent oxyacetamide derivative.


Biochemistry | 2013

Mutant IDH1 Enhances the Production of 2-Hydroxyglutarate Due to Its Kinetic Mechanism.

Alan R. Rendina; Beth Pietrak; Angela Smallwood; Huizhen Zhao; Hongwei Qi; Chad Quinn; Nicholas D. Adams; Nestor O. Concha; Chaya Duraiswami; Sara H. Thrall; Sharon Sweitzer; Benjamin J. Schwartz

The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme.


Bioorganic & Medicinal Chemistry Letters | 2009

Aminofurazans as potent inhibitors of AKT kinase

Meagan B. Rouse; Mark A. Seefeld; Jack Leber; Kenneth C. McNulty; Lihui Sun; William Henry Miller; ShuYun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Anthony E. Choudhry; Michael D. Schaber; Dirk A. Heerding

AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of 5-pyrrolopyridinyl-2-thiophenecarboxamides as potent AKT kinase inhibitors.

Mark A. Seefeld; Meagan B. Rouse; Kenneth C. McNulty; Lihui Sun; Jizhou Wang; Dennis S. Yamashita; Juan I. Luengo; ShuYun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Dirk A. Heerding

A pyrrolopyridinyl thiophene carboxamide 7 was discovered as a tractable starting point for a lead optimization effort in an AKT kinase inhibition program. SAR studies aided by a co-crystal structure of 7 in AKT2 led to the identification of AKT inhibitors with subnanomolar potency. Representative compounds showed antiproliferative activity as well as inhibition of phosphorylation of the downstream target GSK3beta.

Collaboration


Dive into the Nestor O. Concha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge