Nestor Rafael Mirabal
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nestor Rafael Mirabal.
The Astrophysical Journal | 2010
D. A. Kann; Sylvio Klose; Bin-Bin Zhang; Daniele Malesani; Ehud Nakar; Alexei S. Pozanenko; A. C. Wilson; N. Butler; P. Jakobsson; S. Schulze; M. Andreev; L. A. Antonelli; I. Bikmaev; Vadim Biryukov; M. Böttcher; R. A. Burenin; J. M. Castro Cerón; A. J. Castro-Tirado; Guido Chincarini; Bethany Elisa Cobb; S. Covino; P. D'Avanzo; Valerio D'Elia; M. Della Valle; A. de Ugarte Postigo; Yu. S. Efimov; P. Ferrero; Dino Fugazza; J. P. U. Fynbo; M. Gålfalk
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.
Astroparticle Physics | 2013
M. Doro; J. Conrad; D. Emmanoulopoulos; Sanchez-Conde; J. A. Barrio; E. Birsin; J. Bolmont; P. Brun; S. Colafrancesco; Simon Henry Connell; J. L. Contreras; M. K. Daniel; M. Fornasa; M. Gaug; J. F. Glicenstein; A. Gonzalez-Munoz; T. Hassan; D. Horns; A. Jacholkowska; C. Jahn; R Mazini; Nestor Rafael Mirabal; A. Moralejo; E. Moulin; D. Nieto; J. Ripken; Heidi Sandaker; U. Schwanke; G. Spengler; A. Stamerra
Abstract The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV–TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2–3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10°. In the following study, we investigate the prospects for CTA to study several science questions that can profoundly influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations currently under discussion, we employ a Monte Carlo based approach to evaluate the prospects for detection and characterisation of new physics with the array. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, which are virtually void of astrophysical background and have a relatively well known dark matter density; in the region close to the Galactic Centre, where the dark matter density is expected to be large while the astrophysical background due to the Galactic Centre can be excluded; and in clusters of galaxies, where the intrinsic flux may be boosted significantly by the large number of halo substructures. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma-rays from very distant blazars. We establish the axion mass range CTA could probe through observation of long-lasting flares in distant sources. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.
Astroparticle Physics | 2013
G. Dubus; J. L. Contreras; S. Funk; Y. A. Gallant; T. Hassan; J. A. Hinton; Yoshiyuki Inoue; J. Knödlseder; P. Martin; Nestor Rafael Mirabal; M. de Naurois; M. Renaud
Surveys open up unbiased discovery space and generate legacy datasets of long-lasting value. One of the goals of imaging arrays of Cherenkov telescopes like CTA is to survey areas of the sky for faint very high energy gamma-ray (VHE) sources, especially sources that would not have drawn attention were it not for their VHE emission (e.g . the Galactic “dark accelerators”). More than half the currently known VHE sources are to be found in the Galactic Plane. Using standard techniques, CTA can carry out a survey of the region |l|<60° |b|<2° in 250 h (1/4th the available time per year at one location) down to a uniform sensitivity of 3 mCrab (a “Galactic Plane survey”). CTA could also survey 1/4th of the sky down to a sensitivity of 20 mCrab in 370 h of observing time (an “all-sky survey”), which complements well the surveys by the Fermi/LAT at lower energies and extended air shower arrays at higher energies. Observations in (non-standard) divergent pointing mode may shorten the “all-sky survey” time to about 100 h with no loss in survey sensitivity. We present the scientific rationale for these surveys, their place in the multi-wavelength context, their possible impact and their feasibility. We find that the Galactic Plane survey has the potential to detect hundreds of sources. Implementing such a survey should be a major goal of CTA. Additionally, about a dozen blazars, or counterparts to Fermi/LAT sources, are expected to be detected by the all-sky survey, whose prime motivation is the search for extragalactic “dark accelerators”.
Astroparticle Physics | 2013
H. Sol; A. Zech; C. Boisson; U. Barres de Almeida; J. Biteau; J. L. Contreras; B. Giebels; T. Hassan; Y. Inoue; K. Katarzynski; H. Krawczynski; Nestor Rafael Mirabal; Juri Poutanen; F. Rieger; Tomonori Totani; W. Benbow; M. Cerruti; M. Errando; Lisa Fallon; E. M. de Gouveia Dal Pino; J. A. Hinton; Susumu Inoue; J.-P. Lenain; A. Neronov; Keitaro Takahashi; H. Takami; R. White
Abstract Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, to revisit the central engines and their associated relativistic jets, and to study the particle acceleration and emission mechanisms, particularly exploring the missing link between accretion physics, SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an extremely rewarding observing program which will inform us about the inner workings and evolution of AGN. Furthermore these AGN are bright beacons of gamma-rays which will allow us to constrain the extragalactic infrared and optical backgrounds as well as the intergalactic magnetic field, and will enable tests of quantum gravity and other “exotic” phenomena.
Monthly Notices of the Royal Astronomical Society | 2012
Nestor Rafael Mirabal; Vanessa Frias-Martinez; T. Hassan; Enrique Frias-Martinez
Dark matter annihilation signals coming from Galactic subhaloes may account for a small fraction of unassociated point sources detected in the second Fermi-LAT Catalogue (2FGL). To investigate this possibility, we present SIBYL, a Random Forest classifier that offers predictions on class memberships for unassociated Fermi-LAT sources at high Galactic latitudes using gamma-ray features extracted from the 2FGL. SIBYL generates a large ensemble of classification trees that are trained to vote on whether a particular object is an active galactic nucleus (AGN) or a pulsar. After training on a list of 908 identified/associated 2FGL sources, SIBYL reaches individual accuracy rates of up to 97.7 per cent for AGNs and 96.5 per cent for pulsars. Predictions for the 269 unassociated 2FGL sources at |b |≥ 10 ◦ suggest that 216 are potential AGNs and 16 are potential pulsars (with majority votes greater than 70 per cent). The remaining 37 objects are inconclusive, but none is an extreme outlier. These results could guide future quests for dark matter Galactic subhaloes.
Monthly Notices of the Royal Astronomical Society | 2013
Nestor Rafael Mirabal
Evidence of excess GeV emission nearly coinciding with the Galactic Centre has been interpreted as a possible signature of annihilating dark matter. In this paper, we argue that it seems too early to discard pulsars as a viable explanation for the observed excess. On the heels of the recently released Second Fermi LAT Pulsar Catalogue (2FPC), it is still possible that a population of hard ( < 1) millisecond pulsars (MSPs) either endemic to the innermost region or part of a larger nascent collection of hard MSPs that appears to be emerging in the 2FPC could explain the GeV excess near the Galactic Centre.
arXiv: High Energy Astrophysical Phenomena | 2016
John Carr; Csaba Balazs; Torsten Bringmann; Trygve Buanes; M. K. Daniel; M. Doro; C. Farnier; Mattia Fornasa; Jennifer M. Gaskins; Germán A. Gómez-Vargas; M. Hayashida; Kazunori Kohri; V. Lefranc; A. Morselli; E. Moulin; Nestor Rafael Mirabal; J. Rico; Takayuki Saito; M. Sánchez-Conde; Mark Wilkinson; M. Wood; G. Zaharijas; Hannes Zechlin
The Cherenkov Telescope Array (CTA) will have a unique chance of discovery for a large range of masses in Weakly Interacting Massive Particles models of dark matter. The principal target for dark matter searches with CTA is the centre of the Galactic Halo. The best strategy is to perform CTA observations within a few degrees of the Galactic Centre, with the Galactic Centre itself and the most intense diffuse emission regions removed from the analysis. Assuming a cuspy dark matter density profile for the Milky Way, 500 hours of observations in this region provide sensitivities to and below the thermal cross-section of dark matter annihilations, for masses between a few hundred GeV and a few tens of TeV; therefore CTA will have a significant chance of discovery in some models. Since the dark matter density in the Milky Way is far from certain in the inner kpc region, other targets are also proposed for observation, like ultra-faint dwarf galaxies such as Segue 1 with 100 hours per year proposed. Beyond these two observational targets, further alternatives, such as Galactic dark clumps, will be considered closer to the actual date of CTA operations. Sensitivity predictions for dark matter searches are given on the various targets taking into account the latest instrument response functions expected for CTA together with a discussion on the systematic uncertainties from the backgrounds.
Monthly Notices of the Royal Astronomical Society | 2014
Matthew Nichols; Nestor Rafael Mirabal; Oscar Agertz; Felix J. Lockman; Joss Bland-Hawthorn
Under conservative assumptions about the Galaxy, the derived velocity of the Smith Cloud indicates that it will have undergone at least one passage of the Galactic disc. Using hydrodynamic simulations, we examine the present-day structure of the Smith Cloud and find that a dark matter supported cloud is able to reproduce the observed present-day neutral hydrogen mass, column density distribution and morphology. In this case, the dark matter halo becomes elongated owing to the tidal interaction with the Galactic disc. Clouds in models neglecting dark matter confinement are destroyed upon disc passage, unless the initial cloud mass is well in excess of what is observed today. We then determine integrated flux upper limits to the gamma-ray emission around such a hypothesized dark matter core in the Smith Cloud. No statistically significant core or extended gamma-ray emission are detected down to a 95 per cent confidence level upper limit of 1.4 x 10(-10) ph cm(-2) s(-1) in the 1-300 GeV energy range. For the derived distance of 12.4 kpc, the Fermi upper limits set the first tentative constraints on the dark matter cross-sections annihilating into tau(+)tau(-) and b (b) over bar for a high-velocity cloud.
Monthly Notices of the Royal Astronomical Society | 2013
T. Hassan; Nestor Rafael Mirabal; J. L. Contreras; I. Oya
The authors acknowledge the support of the Spanish MINECO under project FPA2010-22056-C06-06 and the German Ministry for Education and Research (BMBF). N.M. acknowledges support from the Spanish government. through a Ram´on y Cajal fellowship. We also thank the referee for useful suggestions and comments on the manuscript.
The Astrophysical Journal | 2009
Nestor Rafael Mirabal; J. P. Halpern
We present a multiwavelength study of the unidentified Fermi gamma-ray source 0FGL J1830.3+0617, which exhibits variability above 200 MeV on timescales of days to weeks. Within the Fermi 95% confidence error contour lies B1827+0617, a radio source with spectral index alpha = 0.09 between 1.4 and 4.85 GHz. The flat spectral index and flux density of 443 mJy at 4.85 GHz are consistent with the bulk of Fermi sources associated with blazars. It is also detected in the 0.3-10 keV band by Swift. Optical imaging in 2009 May identifies B1827+0617 at R ~ 16.9, and shows that it is at least 2 magnitudes brighter than on the Palomar Sky Survey plates. Contemporaneous optical spectroscopy acquired during this high state finds a weak emission line that we attribute to Mg II at redshift z = 0.75, supporting a flat spectrum radio quasar (FSRQ) classification. The variability characteristics and radio properties together indicate that 0FGL J1830.3+0617 at Galactic latitude b = 7.5 degrees is a blazar. Blazar identifications of three additional low-latitude Fermi sources, 0FGL J0643.2+0858, 0FGL J1326.6-5302, and 0FGL J1328.8-5604, are also suggested.