Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Netaji R. Kesana is active.

Publication


Featured researches published by Netaji R. Kesana.


Journal of Fluids Engineering-transactions of The Asme | 2014

Experimental Investigation of Horizontal Gas–Liquid Stratified and Annular Flow Using Wire-Mesh Sensor

Ronald E. Vieira; Netaji R. Kesana; Carlos F. Torres; Brenton S. McLaury; Siamack A. Shirazi; Eckhard Schleicher; Uwe Hampel

Stratified and annular gas–liquid flow patterns are commonly encountered in many industrial applications, such as oil and gas transportation pipelines, heat exchangers, and process equipment. The measurement and visualization of two-phase flow characteristics are of great importance as two-phase flows persist in many fluids engineering applications. A wire-mesh sensor (WMS) technique based on conductance measurements has been applied to investigate two-phase horizontal pipe flow. The horizontal flow test section consisting of a 76.2mm ID pipe, 18m long was employed to generate stratified and annular flow conditions. Two 16 16 wire configuration sensors, installed 17 m from the inlet of the test section, are used to determine the void fraction within the cross section of the pipe and determine interface velocities between the gas and liquid. These physical flow parameters were extracted using signal processing and cross-correlation techniques. In this work, the principle of WMS and the methodology of flow parameter extraction are described. From the obtained raw data time series of void fraction, cross-sectional mean void fraction, time averaged void fraction profiles, interfacial structures, and velocities of the periodic structures are determined for different liquid and gas superficial velocities that ranged from 0.03m/s to 0.2m/s and from 9m/s to 34m/s, respectively. The effects of liquid viscosity on the measured parameters have also been investigated using three different viscosities. [DOI: 10.1115/1.4027799]


Journal of Energy Resources Technology-transactions of The Asme | 2013

Effect of Particle Size and Liquid Viscosity on Erosion in Annular and Slug Flow

Netaji R. Kesana; J. M. Throneberry; Brenton S. McLaury; Siamack A. Shirazi; Edmund F. Rybicki

Erosion measurements in multiphase slug and annular flow regimes have been made in a horizontal 76.2 mm (3-in.) diameter pipe. These flow regimes are selected since they produce higher metal losses than other flow regimes, and they also occur for a wide variety of operating conditions. Experiments are performed with superficial gas velocities ranging from 15.2 m/s (50 ft/s) to 45.7 m/s (150 ft/s) and superficial liquid velocities ranging from 0.46 m/s (1.5 ft/s) to 0.76 m/s (2.5 ft/s), for liquid viscosities of 1 cP and 10 cP. Three different sand sizes (20, 150, and 300 μm sand) were used for performing tests. The shapes of the sand are also different with the 20 and 300 μm sand being sharper than the 150 μm sand. Erosion measurements are obtained using electrical resistance (ER) probes which relate the change in electrical resistance to the change in the thickness of an exposed element resulting from erosion. Two probes are placed in a bend and another probe is placed in a straight section of pipe. The probes in the bend are flat-head probes, and they are placed flush with the outer wall in the 45 deg and 90 deg positions. The probe in the straight pipe is an angle-head probe which protrudes into the flow with the face placed in the center of the pipe.


Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations | 2014

Characterizing Slug/Churn Flow Using Wire Mesh Sensor

Mazdak Parsi; Ronald E. Vieira; Carlos F. Torres; Netaji R. Kesana; Brenton S. McLaury; Siamack A. Shirazi; Uwe Hampel; Eckhard Schleicher

A wire mesh sensor (WMS) is a device used to investigate multi-phase flows. The WMS measures the instantaneous local electrical conductivity of multiphase flows at different measuring points. There is a significant difference in the electrical conductivity of the employed fluids (in this work air and water, conductivity of water is much higher than that of air). Using the difference in the electrical conductivity, the WMS provides the local void fraction. The WMS utilized in this work includes two identical planes of parallel 16×16 grid of wires. The separation distance between these two planes is 32 mm. The WMS was installed in a 76.2 mm (3-inch) diameter vertical pipe to extract information such as void fraction distribution, structure velocity, and slug/churn flow structure. The superficial gas (air) velocity (VSG) ranged from 10 to 38.4 m/s. Liquid (water) superficial velocities (VSL) of 0.30, 0.46, 0.61 and 0.76 m/s were employed. To study the effects of viscosity on the slug/churn flow structure, Carboxyl Methyl Cellulose (CMC) was added to water to increase the liquid viscosity without altering its density. Each experiment was performed for 60 seconds. An operation frequency for the WMS of 10 kHz (totaling 600,000 frames of void fraction measurement per experiment) was used for all experiments.Copyright


ASME 2012 International Mechanical Engineering Congress and Exposition | 2012

Sand Erosion in Multiphase Flow for Low-Liquid Loading and Annular Conditions

Ronald E. Vieira; Netaji R. Kesana; Brenton S. McLaury; Siamack A. Shirazi

Low-liquid loading (LLL) and annular gas-liquid flow patterns are commonly encountered in gas transportation pipelines. They may also occur in other off-shore production facilities such as gas/condensate production systems. Experience gained from production of hydrocarbons has shown that severe degradation of production equipment will occur due to sand entrained in gas-dominant multiphase flows.Sand erosion in multiphase flows is a complex phenomenon since several factors influence the particle impact velocity with the wall. In order to give a more comprehensive understanding of the particle erosion process in this particular scenario and to improve the current semi-mechanistic models, erosion and sand distribution measurements were conducted on 76.2 mm (3 inch) and 101.6 mm (4 inch) diameter pipes in a large scale multiphase flow loop with varying gas (air) and liquid (water) velocities generating low-liquid loading and annular conditions. Particle sizes used in the experiments were 150 and 300 microns with the latter being sharper than the former. Erosion measurements were made at sixteen different locations on a 76.2 mm (3 inch) standard elbow using ultrasonic technology, whereas Electrical Resistance (ER) probes were used for the measurements in a 101.6 mm (4 inch) diameter pipe. The experiments were primarily performed in the upward vertical orientation but a few measurements were performed in the horizontal orientation. Results suggest that the erosion is an order of magnitude higher when the pipe is oriented vertically compared to horizontal orientation. Also, the location of maximum erosion is identified for these flow patterns and it is not dependent on the pipe inclination.© 2012 ASME


ASME 2013 International Mechanical Engineering Congress and Exposition | 2013

Experimental Investigation of Slug Characteristics Through a Standard Pipe Bend

Netaji R. Kesana; Ronald E. Vieira; Eckhard Schleicher; Brenton S. McLaury; Siamack A. Shirazi; Uwe Hampel

Slug flow is a very common flow pattern encountered during the production of petroleum fluids. Likewise, pipe bends are often used to change the direction of the fluids during transportation. This work focuses on comparing various slug characteristics before and after a pipe bend. For this investigation, a dual Wire Mesh Sensor (WMS) is utilized. Measurements are made by placing the sensor before and after the bend. In order to obtain higher spatial and temporal resolution of the signals, a sampling frequency of 10,000 Hz is used. Experiments were conducted in a 76.2 mm (3-inch) diameter pipe utilizing air and water as fluids. Effect of fluid viscosity is also studied by conducting the experiments using three different liquid viscosities: 1, 10 and 40 cP. The experiments were conducted with superficial gas velocity ranging from 9.1 m/s to 35 m/s, and superficial liquid velocity ranged from 0.45 to 0.76 m/s. The three-dimensional time series void data from the Wire-Mesh sensor before and after the bend are analyzed to obtain averaged void fractions, structure of the slugs, void in liquid slugs, bubble size distributions, and radial profiles of gas velocity. Also, this study presents the differences in the void fraction distributions in slugs and pseudo slugs. Since pseudo slugs occur between slug and annular regimes, this information can further the understanding of the effect of flow characteristics on erosion occurring from solid particles for this flow pattern. Finally, from this comprehensive analysis the influence of the bend on the gas and liquid distributions over the cross-section has been discussed.Copyright


ASME 2013 Fluids Engineering Division Summer Meeting | 2013

Experimental Study of Slug Characteristics: Implications to Sand Erosion

Netaji R. Kesana; Ronald E. Vieira; Eckhard Schleicher; Brenton S. McLaury; Siamack A. Shirazi; Uwe Hampel

Sand erosion is a severe problem that many oil and gas producers have to deal with. Therefore, it is desirable to have a model that can predict erosion for various operating conditions. Predicting erosion is a complex problem due to the number of parameters that are involved. The complexity of predicting erosion increases when producing or transporting multiphase fluids through pipelines. It is well known that the characteristics of multiphase flow affect sand erosion in the pipelines. This work specifically concentrates on investigating multiphase-slug characteristics using a measurement technique based on Wire Mesh Sensor. A 16 × 16 dual Wire Mesh Sensor is installed before a standard 76.2 mm (3-inch) elbow for a horizontally oriented pipe. The distance by which the dual Wire Mesh Sensors are separated is 32 mm. The local void fraction is extracted where horizontal and vertical wires of the sensor intersect, utilizing the differences in conductance between gas and liquid as they pass through the crossings of the wires. The fluids used in these multiphase experiments were air and either water or water-Carboxy Methyl Cellulose mixture to increase the liquid viscosity. Experiments were conducted, where superficial gas velocity ranged from 9.1 m/s to 35 m/s, and superficial liquid velocity was 0.76 m/s. Three different liquid viscosities (1 cP, 10 cP and 40 cP) were used for performing the experiments. The void fraction data obtained using the dual Wire Mesh Sensors is utilized to achieve the interfacial velocities of the liquid slug. Further analysis of the data is conducted to obtain other slug characteristics such as the liquid slug body length distribution and frequency of the slugs. Additionally, liquid slug fronts and slug tails were identified. The differences in the characteristics of slug flow and pseudo-slug flow are addressed. Finally, the slug characteristics were utilized in order to enhance the understanding of sand particle impact velocities with the pipe wall and the resulting erosion in the horizontal pipelines and elbow.Copyright


ASME 2012 International Mechanical Engineering Congress and Exposition | 2012

Effect of Particle Size and Viscosity on Erosion in Annular and Slug Flow

Netaji R. Kesana; J. M. Throneberry; Brenton S. McLaury; Siamack A. Shirazi; Edmund F. Rybicki

Solid particle erosion is a mechanical process in which material is removed from a surface due to impacts of solid particles transported within a fluid. It is a common problem faced by the petroleum industry, as solid particles are also produced along with oil and gas. The erosion not only causes losses resulting from repairs and decreased production but also causes safety and environmental concerns. Therefore, the metal losses occurring in different multiphase flow patterns need to be studied and understood in order to develop protective guidelines for oil and gas production equipment. A large scale boom loop, which is capable of generating a wide variety of multiphase flow regimes was used for conducting experiments. Specifically, this work examines erosion measurements in multiphase slug and annular flow regimes. These flow regimes are selected since they produce higher metal losses than other flow regimes, and they also occur for a wide variety of operating conditions. Experiments are performed on a horizontal 0.0762 m (3-inch) diameter pipe, with superficial gas velocities ranging from 15.2 m/s (50 ft/s) to 45.7 m/s (150 ft/s) and superficial liquid velocities ranging from 0.46 m/s (1.5 ft/s) to 0.76 m/s (2.5 ft/s), for liquid viscosities of 1 cP and 10 cP. Carboxymethyl Cellulose (CMC) was used to increase the viscosity of the liquid without significantly altering the density of the liquid. Three different sand sizes (20, 150 and 300 micron sand) were used for performing tests. The shapes of the sand are also different with the 20 and 300 micron sand being sharper than the 150 micron sand. Erosion measurements are taken using Electrical Resistance (ER) probes which relate the change in electrical resistance to the change in the thickness of an exposed element resulting from erosion. Two probes are placed in a bend and another probe is placed in a straight section of pipe. The probes in the bend are flat-head probes, and they are placed flush with the outer wall in the 45 and 90 degree positions. The probe in the straight pipe is an angle-head probe which protrudes into the flow with the face placed in the center of the pipe. Under the flow conditions investigated, the angle-head probe measures the maximum erosion due to its placement. Results demonstrate a significant increase in the metal loss occurs when increasing the superficial gas velocity and decreasing the superficial liquid velocity. The effect of changing the viscosity of the liquid is not as clear. Results suggest a slight increase in metal loss by increasing the viscosity from 1cP to 10 cP in slug flow. However, for annular flow, higher erosion occurs for the lower liquid viscosity considered.Copyright


ASME 2013 Fluids Engineering Division Summer Meeting | 2013

Experimental Investigation of Horizontal Gas-Liquid Stratified and Annular Flow Using Wire Mesh Sensor

Ronald E. Vieira; Netaji R. Kesana; Carlos F. Torres; Brenton S. McLaury; Siamack A. Shirazi; Eckhard Schleicher; Uwe Hampel

Stratified and annular gas-liquid flow patterns are commonly encountered in oil and gas transportation pipelines. The measurement and visualization of two-phase flow characteristics is of great importance as two-phase flows persist in many fluids engineering applications. A Wire Mesh Sensor technique based on conductance measurements was applied to investigate two-phase horizontal pipe flow. The horizontal flow test section consisting of a 76 mm ID pipe, 18 m long was employed to generate stratified and annular flow conditions. A 16×16 wire configuration sensor, installed at 17 m from the inlet test section, is used to determine the void fraction within the cross-section of the pipe. Physical flow parameters were extracted based on processed raw measured data obtained by the sensors using signal processing techniques. In this work, the principle of wire mesh sensors and the methodology of flow parameter extraction are described. From the obtained raw data time series of void fraction, mean void fraction and characteristic liquid film velocities are determined for different liquid and gas superficial velocities that ranged from 0.03 m/s to 0.2 m/s and from 9 m/s to 34 m/s, respectively. The effects of liquid viscosity on the measured parameters are also investigated using three different viscosities.Copyright


ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels | 2012

Ultrasonic Measurement of Multiphase Flow Erosion Patterns in a Standard Elbow

Netaji R. Kesana; S. A. Grubb; Brenton S. McLaury; Siamack A. Shirazi

Solid particle erosion is a mechanical process in which material is removed from a surface due to impacts of solid particles transported within a fluid. It is a common problem faced by the petroleum industry, as solid particles are also produced along with oil and gas. The erosion not only causes economic losses resulting from repairs and decreased production but also causes safety and environmental concerns. Therefore, the metal losses occurring in different multiphase flow regimes need to be studied and understood in order to develop protective guidelines for oil and gas production equipment. In the current study, a novel non-invasive ultrasonic (UT) device has been developed and implemented to measure the metal loss at 16 different locations inside an elbow. Initially, experiments were performed with a single-phase carrier fluid (gas-sand) moving in the pipeline, and the erosion magnitudes are compared with Computational Fluid Dynamics (CFD) results and found to be in good agreement. Next, experiments were extended to the multiphase slug flow regime. Influence of particle diameter and liquid viscosity were also studied. Two different particle sizes (150 and 300 micron sand) were used for performing tests. The shapes of the sand are also different with the 300 micron sand being sharper than the 150 micron sand. Three different liquid viscosities were used for the present study (1 cP, 10 cP and 40 cP). Carboxymethyl Cellulose (CMC) was used to increase the viscosity of the liquid without significantly altering the density of the liquid. While performing the UT experiments, simultaneous metal loss measurements were also made using an intrusive Electrical Resistance (ER) probe in a section of straight pipe. The probe in the straight pipe is an angle-head probe which protrudes into the flow with the face placed in the center of the pipe. The UT erosion measurements in a bend are also compared with experimental data obtained placing an intrusive flat head ER probe flush in a bend, and the results were found to be in good agreement. Finally, the non-invasive NanoUT permanent placement temperature compensated ultrasonic wall thickness device developed for this work has the capability of measuring metal loss at many locations and also identifying the maximum erosive location on the pipe bend.Copyright


Experimental Thermal and Fluid Science | 2014

Experimental investigation of the effect of 90° standard elbow on horizontal gas–liquid stratified and annular flow characteristics using dual wire-mesh sensors

Ronald E. Vieira; Netaji R. Kesana; Brenton S. McLaury; Siamack A. Shirazi; Carlos F. Torres; Eckhard Schleicher; Uwe Hampel

Collaboration


Dive into the Netaji R. Kesana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckhard Schleicher

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Uwe Hampel

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Skartlien

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge