Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nete Bernbom is active.

Publication


Featured researches published by Nete Bernbom.


Applied and Environmental Microbiology | 2006

Effects of Lactococcus lactis on Composition of Intestinal Microbiota: Role of Nisin

Nete Bernbom; Tine Rask Licht; Carl-Henrik Brogren; Birthe Jelle; Anette H. Johansen; Iker Badiola; Finn K. Vogensen; Birgit Nørrung

ABSTRACT This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine and 200-fold higher in feces than the corresponding concentrations estimated by a biological assay. This indicates that nisin was degraded or inactivated in the gastrointestinal tract, since fragments of this bacteriocin are detected by ELISA while an intact molecule is needed to retain biological activity.


Journal of Applied Microbiology | 2009

Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

Nete Bernbom; Yin Ng; R.L. Jorgensen; Ayyoob Arpanaei; Rikke Louise Meyer; Peter Kingshott; Rebecca Munk Vejborg; Per Klemm; Lone Gram

Aims:  Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion to stainless steel.


Applied and Environmental Microbiology | 2011

Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity.

Nete Bernbom; Yoke Yin Ng; Staffan Kjelleberg; Tilmann Harder; Lone Gram

ABSTRACT The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so other compounds/mechanisms must be present in the other Pseudoalteromonas strains with antifouling activity.


Biofilms | 2006

Bacterial Adhesion to Stainless Steel Is Reduced by Aqueous Fish Extract Coatings

Nete Bernbom; R.L. Jorgensen; Yoke Yin Ng; Rikke Louise Meyer; Peter Kingshott; Rebecca Munk Vejborg; Per Klemm; Flemming Besenbacher; Lone Gram

Microbial adhesion and biofilm formation on surfaces pose major problems and risks to human health. One way to circumvent this problem is to coat surfaces (in this report stainless steel) with a non-toxic fish extract that generates an abiotic surface with less bacterial attachment than uncoated surfaces or surfaces coated with, for example, tryptone soy broth. The bacteria grow well in the fish extract; hence a general bacteriocidal effect is not the reason for the antifouling effect. Bacterial attachment was quantified by different methods including (a) direct fluorescence microscopy, (b) removal by ultrasound and subsequent quantification of the adhered bacteria, and (c) regrowth of the adhered bacteria measured by indirect conductometry. Surprisingly, the bacterial counts on surfaces coated with aqueous fish extract were 10‐100 times lower than on surfaces coated with laboratory broths when surfaces were submerged in bacterial suspensions. The effect was seen for Pseudomonas fluorescens AH2, Pseudomonas aeruginosa PAO1, Escherichia coli MG1655, Vibrio anguillarum 90-11-287 and Aeromonas salmonicida Jno 3175/88. It lasted for at least 7 days. Atomic force microscopy showed that steel surfaces conditioned with fish extract were covered by a thin layer of spherical, nanosized particles. Chemical analysis of the surfaces coated with adsorbed fish extract using X-ray photoelectron spectroscopy revealed that the layer was proteinaceous and had a thickness less than 2nm. Numerous protein bands/peaks were also detected by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry techniques. We conclude that coating the stainless steel surface with fish extract results in a thin protein layer that reduces bacterial adhesion significantly.


International Journal of Food Microbiology | 2011

Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation.

Nete Bernbom; Birte Fonnesbech Vogel; Lone Gram

The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254 nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48 h) and the number of Listeria monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic material and the time L. monocytogenes was allowed to adhere to steel before exposure. L. monocytogenes grown and attached in tryptone soy broth (TSB) with glucose were rapidly killed (after 2 min) by UV-C light. However, bacteria grown and adhered in TSB with glucose and 5% NaCl were more resistant and numbers declined with 4-5 log units during exposure of 8-10 min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2-3 log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a biofilm for 7 days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that it, as all disinfecting procedures, is hampered by the presence of organic material.


International Journal of Food Microbiology | 2009

Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota

Nete Bernbom; Birthe Jelle; Carl-Henrik Brogren; Finn K. Vogensen; Birgit Nørrung; Tine Rask Licht

The bacteriocin pediocin PA-1 has potential use as a food biopreservative, and understanding its effect on the commensal gut microbiota is important for assessment of consumer risks associated with the use of biopreservative cultures. Effects of ingested (i) pediocin PA-1 producing Lactobacillus plantarum DDEN 11007, (ii) the plasmid cured pediocin negative L. plantarum DDEN 12305, or (iii) supernatants of either of these two strains on the composition of the intestinal microbiota of Human Microbiota Associated (HMA) rats were examined by selective cultivation and molecular methods. The culturable microbiota was in all treatments dominated by lactic acid bacteria and coliforms and no changes in the rat commensal microbiota were detected after ingestion of either of the two L. plantarum strains as determined by both culturable methods and molecular methods (DGGE). Both strains were detected in the faeces after ingestion. Pediocin PA-1 did not mediate changes of the rat microbiota, and a biological assay indicated that the bacteriocin was degraded or inactivated during passage through the intestine.


Systematic and Applied Microbiology | 2015

Phaeobacter inhibens from the Roseobacter clade has an environmental niche as a surface colonizer in harbors

Lone Gram; Bastian Barker Rasmussen; Bernd Wemheuer; Nete Bernbom; Yin Ng; Cisse Hedegaard Porsby; Sven Breider; Thorsten Brinkhoff

Phaeobacter inhibens belongs to the marine Roseobacter clade and is important as a carbon and sulfur metabolizer, a biofilm former and producer of the antibiotic tropodithietic acid (TDA). The majority of cultured strains have been isolated from marine aquaculture sites, however, their niche in the environment is to date unknown. Here, we report on the repeated isolation of Phaeobacter inhibens strains from a marine environment (harbors) not related to aquaculture. Based on phenotype and 16S rRNA gene sequence similarity, a total of 64 P. inhibens strains were identified from 35 samples (eukaryotic organisms or biofilms on inert surfaces) in Jyllinge Harbor during late summer and autumn, but not during winter and spring in 2009, 2011, and 2012. P. inhibens strains were also isolated from biofilms at three other Danish harbors (in 2012), but not from the surrounding seawater. Ten of the 14 samples from which P. inhibens was cultured contained bryozoans. DNA was extracted (in 2012) from 55 out of 74 Jyllinge Harbor samples, and 35 were positive for Phaeobacter using a genus-specific PCR. P. inhibens strains were isolated from nine of these samples. DNA and RNA were isolated from 13 random samples and used for amplification of 16S rRNA. P. inhibens was detected in five of these samples, all of which were biofilm samples, by pyrotag-sequencing at a prevalence of 0.02-0.68% of the prokaryotic community. The results indicated that P. inhibens had a niche in biofilms of fouled surfaces in harbor areas and that the population followed a seasonal fluctuation.


International Journal of Food Microbiology | 2009

Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product

Nete Bernbom; Yoke Yin Ng; Christine Paludan-Müller; Lone Gram

Fermentation of raw fish is a common process in Asia for improvement of shelf life and safety, however, little is known about the survival of pathogenic bacteria in these products. Raw fish may be contaminated with Salmonella and Vibrio species. The purpose of this study was to determine survival and potential growth of Salmonella enterica serovar Weltevreden, S. enterica serovar Enteritidis, Vibrio cholerae and V. parahaemolyticus as influenced by the preservation parameters (sodium chloride, garlic and lactic acid) present in the Thai fermented fish product som-fak. The inhibitory effects of sodium chloride (0-4%), garlic (0-10%) and lactic acid (pH levels as in som-fak) were measured in modified brain heart infusion (BHI) broth at 30 degrees C. All bacteria were inhibited by 8-10% sodium chloride. Salmonella grew in all concentrations of garlic whereas Vibrio spp. were inhibited by 1.0-1.5%. Lactic acid was inhibitory at levels above 1.5%. The combinations of sodium chloride, lactic acid and garlic showed a distinct hurdle effect in the broth system. Neither S. Enteritidis, V. cholerae nor V. parahaemolyticus grew in garlic (0.5-1%), regardless of the level of sodium chloride (0.5-4% (w/v)), when lactic acid (0.5-2%) was present. S. Weltevreden was the least inhibited of the four bacteria and grew in the combination of 0.5% garlic and 0.5% lactic acid regardless of the NaCl level (0.5-4% (w/v)). Som-fak with 0 to 10% garlic or 2% glucose was inoculated with either (i) 10(3) CFU/g Salmonella Weltevreden, (ii) 10(6) CFU/g garlic fermenting Lactobacillus plantarum strain 509 or (iii) a combination of the two strains and stored at 30 degrees C. The Salmonella count increased to >10(8) CFU/g (>10(6) CFU/g for 10% garlic) in all types of som-fak inoculated with S. Weltevreden within the first day. Only a combination of at least 6% garlic and L. plantarum 509 was enough to prevent growth of the inoculated Salmonella whereas adding the Lactobacillus strain alone or in combination with glucose was insufficient to prevent growth. Our results show that Salmonella Weltevreden can grow in som-fak independently of the inhibitory substances normally present in this type of product, emphasising the importance of preventing contamination. However, our results also suggest that the use of garlic fermenting starter cultures in combination with garlic could improve safety of fermented fish products.


Journal of Applied Microbiology | 2008

Anti‐adhesive properties of fish tropomyosins

Rebecca Munk Vejborg; Nete Bernbom; Lone Gram; Per Klemm

Aims:  We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria‐repelling effect.


Colloids and Surfaces B: Biointerfaces | 2013

Physicochemical characterization of fish protein adlayers with bacteria repelling properties

Rikke Louise Meyer; Ayyoob Arpanaei; S. Pillai; Nete Bernbom; Jan J. Enghild; Yin Ng; Lone Gram; Flemming Besenbacher; Peter Kingshott

Materials coated with aqueous fish protein extracts can reduce bacterial adhesion, but the mechanism behind the observed effect is not fully understood. In this study we explore the physicochemical properties of fish muscle protein adlayers on four substrates: gold, stainless steel, polystyrene and silicon dioxide. The aims were (i) to determine if the anti-adhesive effect is independent of the underlying substrate chemistry, (ii) to link the physicochemical properties of the adlayer to its ability to repel bacteria, and (iii) to elucidate the mechanism behind this effect. The main proteins on all surfaces were the muscle proteins troponin, tropomyosin, and myosin, and the lipid binding protein apolipoprotein. The quantity, viscoelasticity, and hydration of the protein adlayers varied greatly on the different substrates, but this variation did not affect the bacterial repelling properties. Our results imply that these proteins adsorb to all substrates and provide a steric barrier towards bacterial adhesion, potentially providing a universal antifouling solution.

Collaboration


Dive into the Nete Bernbom's collaboration.

Top Co-Authors

Avatar

Lone Gram

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Birgit Nørrung

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Tine Rask Licht

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yin Ng

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Yoke Yin Ng

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Kingshott

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Klemm

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge