Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Netta Mäkinen is active.

Publication


Featured researches published by Netta Mäkinen.


Science | 2011

MED12, the Mediator Complex Subunit 12 Gene, Is Mutated at High Frequency in Uterine Leiomyomas

Netta Mäkinen; Miika Mehine; Jaana Tolvanen; Eevi Kaasinen; Yilong Li; Heli J. Lehtonen; Massimiliano Gentile; Jian Yan; Martin Enge; Minna Taipale; Mervi Aavikko; Riku Katainen; Elina Virolainen; Tom Böhling; Taru A. Koski; Virpi Launonen; Jari Sjöberg; Jussi Taipale; Pia Vahteristo; Lauri A. Aaltonen

Uterine fibroids frequently harbor mutations in a specific gene that has been implicated in transcriptional regulation. Uterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients. The Mediator complex is a 26-subunit transcriptional regulator that bridges DNA regulatory sequences to the RNA polymerase II initiation complex. All mutations resided in exon 2, suggesting that aberrant function of this region of MED12 contributes to tumorigenesis.


The New England Journal of Medicine | 2013

Characterization of Uterine Leiomyomas by Whole-Genome Sequencing

Miika Mehine; Eevi Kaasinen; Netta Mäkinen; Riku Katainen; Kati Kämpjärvi; Esa Pitkänen; Hanna-Riikka Heinonen; Ralf Bützow; Outi Kilpivaara; Anna Kuosmanen; Heikki Ristolainen; Massimiliano Gentile; Jari Sjöberg; Pia Vahteristo; Lauri A. Aaltonen

BACKGROUND Uterine leiomyomas are benign but affect the health of millions of women. A better understanding of the molecular mechanisms involved may provide clues to the prevention and treatment of these lesions. METHODS We performed whole-genome sequencing and gene-expression profiling of 38 uterine leiomyomas and the corresponding myometrium from 30 women. RESULTS Identical variants observed in some separate tumor nodules suggested that these nodules have a common origin. Complex chromosomal rearrangements resembling chromothripsis were a common feature of leiomyomas. These rearrangements are best explained by a single event of multiple chromosomal breaks and random reassembly. The rearrangements created tissue-specific changes consistent with a role in the initiation of leiomyoma, such as translocations of the HMGA2 and RAD51B loci and aberrations at the COL4A5-COL4A6 locus, and occurred in the presence of normal TP53 alleles. In some cases, separate events had occurred more than once in single tumor-cell lineages. CONCLUSIONS Chromosome shattering and reassembly resembling chromothripsis (a single genomic event that results in focal losses and rearrangements in multiple genomic regions) is a major cause of chromosomal abnormalities in uterine leiomyomas; we propose that tumorigenesis occurs when tissue-specific tumor-promoting changes are formed through these events. Chromothripsis has previously been associated with aggressive cancer; its common occurrence in leiomyomas suggests that it also has a role in the genesis and progression of benign tumors. We observed that multiple separate tumors could be seeded from a single lineage of uterine leiomyoma cells. (Funded by the Academy of Finland Center of Excellence program and others.).


British Journal of Cancer | 2012

Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer

Kati Kämpjärvi; Netta Mäkinen; Outi Kilpivaara; J. Arola; Hanna-Riikka Heinonen; Jan Böhm; O. Abdel-Wahab; H. J. Lehtonen; L. M. Pelttari; Miika Mehine; Heinrich Schrewe; Heli Nevanlinna; R. L. Levine; Peter Hokland; Tom Böhling; Jukka-Pekka Mecklin; Ralf Bützow; Lauri A. Aaltonen; Pia Vahteristo

Background:Mediator complex participates in transcriptional regulation by connecting regulatory DNA sequences to the RNA polymerase II initiation complex. Recently, we discovered through exome sequencing that as many as 70% of uterine leiomyomas harbour specific mutations in exon 2 of mediator complex subunit 12 (MED12). In this work, we examined the role of MED12 exon 2 mutations in other tumour types.Methods:The frequency of MED12 exon 2 mutations was analysed in altogether 1158 tumours by direct sequencing. The tumour spectrum included mesenchymal tumours (extrauterine leiomyomas, endometrial polyps, lipomas, uterine leiomyosarcomas, other sarcomas, gastro-intestinal stromal tumours), hormone-dependent tumours (breast and ovarian cancers), haematological malignancies (acute myeloid leukaemias, acute lymphoid leukaemias, myeloproliferative neoplasms), and tumours associated with abnormal Wnt-signalling (colorectal cancers (CRC)).Results:Five somatic alterations were observed: three in uterine leiomyosarcomas (3/41, 7%; Gly44Ser, Ala38_Leu39ins7, Glu35_Leu36delinsVal), and two in CRC (2/392, 0.5%; Gly44Cys, Ala67Val).Conclusion:Somatic MED12 exon 2 mutations were observed in uterine leiomyosarcomas, suggesting that a subgroup of these malignant tumours may develop from a leiomyoma precursor. Mutations in CRC samples indicate that MED12 may, albeit rarely, contribute to CRC tumorigenesis.


Cell Reports | 2014

Uterine Leiomyoma-Linked MED12 Mutations Disrupt Mediator-Associated CDK Activity

Mikko P. Turunen; Jason M. Spaeth; Salla Keskitalo; Min Ju Park; Teemu Kivioja; Alison D. Clark; Netta Mäkinen; Fangjian Gao; Kimmo Palin; Helka Nurkkala; Anna Vähärautio; Mervi Aavikko; Kati Kämpjärvi; Pia Vahteristo; Chongwoo A. Kim; Lauri A. Aaltonen; Markku Varjosalo; Jussi Taipale; Thomas G. Boyer

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at very high frequency (∼70%) in uterine leiomyomas. However, the influence of these mutations on Mediator function and the molecular basis for their tumorigenic potential remain unknown. To clarify the impact of these mutations, we used affinity-purification mass spectrometry to establish the global protein-protein interaction profiles for both wild-type and mutant MED12. We found that uterine leiomyoma-linked mutations in MED12 led to a highly specific decrease in its association with Cyclin C-CDK8/CDK19 and loss of Mediator-associated CDK activity. Mechanistically, this occurs through disruption of a MED12-Cyclin C binding interface that we also show is required for MED12-mediated stimulation of Cyclin C-dependent CDK8 kinase activity. These findings indicate that uterine leiomyoma-linked mutations in MED12 uncouple Cyclin C-CDK8/19 from core Mediator and further identify the MED12/Cyclin C interface as a prospective therapeutic target in CDK8-driven cancers.


Fertility and Sterility | 2014

Genomics of uterine leiomyomas: insights from high-throughput sequencing

Miika Mehine; Netta Mäkinen; Hanna-Riikka Heinonen; Lauri A. Aaltonen; Pia Vahteristo

Uterine leiomyomas are benign smooth-muscle tumors of extremely low malignant potential. Early work utilizing classical cytogenetics revealed that a subset of uterine leiomyomas harbor recurrent chromosomal rearrangements, such as translocations affecting the HMGA2 gene. Our understanding of the genetics of many tumor types has deepened remarkably with the emergence of next-generation sequencing technologies. Exome sequencing identified that the majority of leiomyomas display highly specific MED12 mutations. Further studies suggest that these MED12 hotspot mutations are also frequent in breast fibroadenomas, but not in other human tumors. Whole-genome sequencing showed that a subset of leiomyomas display complex chromosomal rearrangements resembling chromothripsis. These were formed in a single event of chromosomal breakage and random reassembly involving one or a limited number of chromosomes. Although most leiomyomas have been shown to arise independently, these studies also revealed that distinct nodules within a uterus may display identical genetic changes indicating a common clonal origin. A minority of leiomyomas were also found to display deletions within the COL4A5-COL4A6 genes, leading to upregulation of the adjacent gene IRS4. The findings derived from high-throughput sequencing combined with previous knowledge have led to an emerging molecular classification of leiomyomas, suggesting that there are several distinct pathogenic pathways involved in leiomyoma formation. The evidence points to at least 4 molecular subclasses: leiomyomas with MED12 mutation, FH inactivation, HMGA2 overexpression, and COL4A6-COL4A5 deletion. Elucidating the molecular pathogenesis of leiomyomas should be relevant for developing treatments for this very common disease.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers.

Miika Mehine; Eevi Kaasinen; Hanna-Riikka Heinonen; Netta Mäkinen; Kati Kämpjärvi; Nanna Sarvilinna; Mervi Aavikko; Anna Vähärautio; Annukka Pasanen; Ralf Bützow; Oskari Heikinheimo; Jari Sjöberg; Esa Pitkänen; Pia Vahteristo; Lauri A. Aaltonen

Significance The clinical and scientific community widely regards uterine leiomyomas as a single entity, although evidence of genetic heterogeneity exists. The aim of this study was to explore transcriptional differences between leiomyomas harboring different genetic alterations, including high mobility group AT-hook 2 rearrangements, mediator complex subunit 12 mutations, biallelic inactivation of fumarate hydratase, and collagen, type IV, alpha 5-collagen, type IV, alpha 6 deletions. The evidence presented herein strongly suggests that specific driver mutations are the major determinants of expression changes in leiomyomas. Here we highlight subtype-specific expression differences in key driver pathways and emphasize the utility of stratification in leiomyoma research. Finally, we offer a set of candidate biomarkers that will facilitate the molecular classification of leiomyomas. Uterine leiomyomas are common benign smooth muscle tumors that impose a major burden on women’s health. Recent sequencing studies have revealed recurrent and mutually exclusive mutations in leiomyomas, suggesting the involvement of molecularly distinct pathways. In this study, we explored transcriptional differences among leiomyomas harboring different genetic drivers, including high mobility group AT-hook 2 (HMGA2) rearrangements, mediator complex subunit 12 (MED12) mutations, biallelic inactivation of fumarate hydratase (FH), and collagen, type IV, alpha 5 and collagen, type IV, alpha 6 (COL4A5-COL4A6) deletions. We also explored the transcriptional consequences of 7q22, 22q, and 1p deletions, aiming to identify possible target genes. We investigated 94 leiomyomas and 60 corresponding myometrial tissues using exon arrays, whole genome sequencing, and SNP arrays. This integrative approach revealed subtype-specific expression changes in key driver pathways, including Wnt/β-catenin, Prolactin, and insulin-like growth factor (IGF)1 signaling. Leiomyomas with HMGA2 aberrations displayed highly significant up-regulation of the proto-oncogene pleomorphic adenoma gene 1 (PLAG1), suggesting that HMGA2 promotes tumorigenesis through PLAG1 activation. This was supported by the identification of genetic PLAG1 alterations resulting in expression signatures as seen in leiomyomas with HMGA2 aberrations. RAD51 paralog B (RAD51B), the preferential translocation partner of HMGA2, was up-regulated in MED12 mutant lesions, suggesting a role for this gene in the genesis of leiomyomas. FH-deficient leiomyomas were uniquely characterized by activation of nuclear factor erythroid 2-related factor 2 (NRF2) target genes, supporting the hypothesis that accumulation of fumarate leads to activation of the oncogenic transcription factor NRF2. This study emphasizes the need for molecular stratification in leiomyoma research and possibly in clinical practice as well. Further research is needed to determine whether the candidate biomarkers presented herein can provide guidance for managing the millions of patients affected by these lesions.


European Journal of Human Genetics | 2013

MED12 exon 2 mutations in histopathological uterine leiomyoma variants.

Netta Mäkinen; Pia Vahteristo; Kati Kämpjärvi; Johanna Arola; Ralf Bützow; Lauri A. Aaltonen

Uterine leiomyomas, or fibroids, are the most common human tumors. Based on histopathology, they can be divided into common leiomyomas and various relatively rare subtypes that mimic malignancy in one or more aspects. Recently, we showed that exon 2 of mediator complex subunit 12 (MED12) is mutated in up to 70% of common fibroids. To investigate the frequency of MED12 exon 2 mutations in histopathological uterine leiomyoma variants, we screened altogether 206 lesions, including 69 histopathologically common leiomyomas, 59 cellular (23 cellular and 36 highly cellular), 18 atypical and 26 mitotically active leiomyomas, as well as 34 uterine fibroid samples from 14 hereditary leiomyomatosis and renal cell cancer patients with a heterozygous germ line mutation in fumarate hydratase (FH). The uterine leiomyoma variants harbored MED12 exon 2 mutations significantly less frequently than common leiomyomas (P=2.93 × 10−8). In all, 6 mutations were detected among cellular fibroids (6/67; 8.96%), 3 among atypical fibroids (3/18; 16.67%) and 10 among mitotically active fibroids (10/26; 38.46%). Only mitotically active fibroids displayed a mutation frequency that was not statistically different from common leiomyomas (P=0.11). Three MED12 exon 2 mutations were detected among 34 tumors with a heterozygous germ line FH mutation (P=5.28 × 10−7). None of these tumors displayed biallelic inactivation of FH. Our results suggest that MED12 mutation positivity is a key characteristic of common leiomyomas. Cellular and atypical fibroids, in particular, may arise through different molecular mechanisms. The results also propose that MED12 and biallelic FH mutations may be mutually exclusive.


Fertility and Sterility | 2014

MED12 mutation frequency in unselected sporadic uterine leiomyomas

Hanna-Riikka Heinonen; Nanna Sarvilinna; Jari Sjöberg; Kati Kämpjärvi; Esa Pitkänen; Pia Vahteristo; Netta Mäkinen; Lauri A. Aaltonen

OBJECTIVE To determine the frequency of mediator complex subunit 12 (MED12) mutations in well-documented, prospectively collected, unselected series of sporadic uterine leiomyomas to better understand the contribution of MED12 mutations in leiomyoma genesis. DESIGN Mutation analysis of two prospectively collected sample series. SETTING Department of gynecology in university hospital and medical genetics research laboratory. PATIENT(S) 164 uterine leiomyomas from 28 patients (13 consecutive and 15 unselected patients) undergoing hysterectomy. INTERVENTION(S) MED12 mutation screening by direct sequencing, and clinical data collection. MAIN OUTCOME MEASURE(S) MED12 mutation status and various clinical variables. RESULT(S) MED12 mutations were found in 73 (83.0%) of 88 and 65 (85.5%) of 76 of uterine leiomyomas from the consecutive and unselected patient series, respectively. Smaller tumor size and a larger number of tumors correlated with positive MED12 mutation status. CONCLUSION(S) The frequency of MED12 mutations in our prospectively collected uterine leiomyoma sets was higher than in previous works. This is in keeping with the concept that MED12 mutation-positive tumors tend to be smaller in size than MED12 mutation-negative tumors. The results highlight the central role of MED12 mutations in uterine leiomyoma genesis.


International Journal of Cancer | 2014

Exomic landscape of MED12 mutation‐negative and ‐positive uterine leiomyomas

Netta Mäkinen; Pia Vahteristo; Ralf Bützow; Jari Sjöberg; Lauri A. Aaltonen

Uterine leiomyomas are extremely common tumors originating from the smooth muscle cells of myometrium. We recently reported recurrent somatic mutations in mediator complex subunit 12 (MED12) in the majority of these lesions, and analyzed chromosomal abnormalities in leiomyomas by whole‐genome sequencing. The aim of our study was to examine in detail uterine leiomyoma exomes, to search for driver mutations in MED12 mutation‐negative leiomyomas and to scrutinize MED12 mutation‐positive leimyomas for additional contributing mutations. We analyzed whole exome sequencing data of 27 uterine leiomyomas (12 MED12 mutation‐negative and 15 MED12 mutation‐positive) and their paired normal myometrium. We searched for genes, which would be recurrently mutated. No such genes were identified in MED12 mutation‐negative uterine leiomyomas. Similarly, MED12 mutation‐positive leiomyomas displayed no additional recurrent changes. The complete lack of novel driver point mutations in the examined series highlights the unique role of MED12 mutations in genesis of uterine leiomyomas, and suggests that these mutations alone may be sufficient for tumor development. Additional factors that cannot be detected by exome sequencing, such as somatic structural rearrangements, epigenetic events and intronic variants, are likely to have a particular impact to the development of MED12 wild‐type lesions.


PLOS Genetics | 2016

Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12

Netta Mäkinen; Mervi Aavikko; Tuomas Heikkinen; Minna Taipale; Jussi Taipale; Riitta Koivisto-Korander; Ralf Bützow; Pia Vahteristo

Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.

Collaboration


Dive into the Netta Mäkinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jari Sjöberg

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annukka Pasanen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge