Netta Shemesh
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Netta Shemesh.
Aging Cell | 2013
Netta Shemesh; Nadav Shai; Anat Ben-Zvi
All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC‐dependent modulation of proteostasis requires several different signaling pathways, including hsf‐1 and daf‐16/kri‐1/tcer‐1, daf‐12, daf‐9, daf‐36, nhr‐80, and pha‐4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.
Essays in Biochemistry | 2016
Yael Bar-Lavan; Netta Shemesh; Anat Ben-Zvi
Quality control is an essential aspect of cellular function, with protein folding quality control being carried out by molecular chaperones, a diverse group of highly conserved proteins that specifically identify misfolded conformations. Molecular chaperones are thus required to support proteins affected by expressed polymorphisms, mutations, intrinsic errors in gene expression, chronic insult or the acute effects of the environment, all of which contribute to a flux of metastable proteins. In this article, we review the four main chaperone families in metazoans, namely Hsp60 (where Hsp is heat-shock protein), Hsp70, Hsp90 and sHsps (small heat-shock proteins), as well as their co-chaperones. Specifically, we consider the structural and functional characteristics of each family and discuss current models that attempt to explain how chaperones recognize and act together to protect or recover aberrant proteins.
Current Genomics | 2014
Nadav Shai; Netta Shemesh; Anat Ben-Zvi
Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activating cytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, and enhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditis elegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation of quality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlled cell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes in proteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans. Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeled at the point of transition between development and adulthood to influence the subsequent course of aging.
PLOS Genetics | 2016
Yael Bar-Lavan; Netta Shemesh; Shiran Dror; Rivka Ofir; Esti Yeger-Lotem; Anat Ben-Zvi
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed.
Journal of Visualized Experiments | 2013
Ido Karady; Anna Frumkin; Shiran Dror; Netta Shemesh; Nadav Shai; Anat Ben-Zvi
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Frontiers in Molecular Neuroscience | 2017
Netta Shemesh; Nadav Shai; Lana Meshnik; Rotem Katalan; Anat Ben-Zvi
Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link between the reproductive system and somatic proteostasis could be uncoupled by activating downstream effectors in the gonadal longevity cascade. Specifically, we examined whether over-expression of lipl-4 (lipl-4(oe)), a target gene of the gonadal longevity pathway, or increase in arachidonic acid (AA) levels, associated with lipl-4(oe), modulated proteostasis and reproduction. We found that lipl-4(oe) rescued somatic proteostasis and postponed the onset of aggregation and toxicity in C. elegans models of polyglutamine (polyQ) diseases. However, lipl-4(oe) also disrupted fatty acid transport into developing oocytes and reduced reproductive success. In contrast, diet supplementation of AA recapitulated lipl-4(oe)-mediated proteostasis enhancement in wild type animals but did not affect the reproductive system. Thus, the gonadal longevity pathway mediates a trade-off between somatic maintenance and reproduction, in part by regulating the expression of genes, such as lipl-4, with inverse effects on somatic maintenance and reproduction. We propose that AA could uncouple such germline to soma crosstalk, with beneficial implications protein misfolding diseases.
Archive | 2016
Netta Shemesh; Anat Ben-Zvi
Protein folding and clearance machineries are required for the maintenance and function of the proteome. Quality control systems and activation of stress signaling pathways have, therefore, profound consequences on the long-term health of the cell and, by extension, on lifespan. Aging is associated with loss of cellular function, increased vulnerability to stress, and enhanced susceptibility to disease. Over the course of a lifespan, proteome stability is substantially impacted by mutations, by processing errors, and by the acute effects of environmental stresses. Recently, the function of cellular protein quality control networks, as well as stress signaling pathways, was shown to be differentially regulated over the course of life, leading to reduced proteostasis capacity and decreased stress response activation during adulthood. Proteostatic collapse can be partially mitigated by overexpression of stress response transcription factors, such as HSF1, or by enhancing the activity of quality control systems, which can have significant beneficial effects on lifespan extension and suppression of age-related misfolding diseases. However, the link between proteostasis and lifespan can also be uncoupled, for example, by cell-nonautonomous stress signaling. Here, we will examine how proteostasis changes with age. We will then focus on HSF1 and review its roles in lifespan regulation, as well as how HSF1 function is modulated with age. Finally, we will examine the cell-nonautonomous regulation of HSF1, specifically during aging.
PLOS Genetics | 2018
Ruth Barshir; Idan Hekselman; Netta Shemesh; Moran Sharon; Lena Novack; Esti Yeger-Lotem
A longstanding puzzle in human genetics is what limits the clinical manifestation of hundreds of hereditary diseases to certain tissues, while their causal genes are expressed throughout the human body. A general conception is that tissue-selective disease phenotypes emerge when masking factors operate in unaffected tissues, but are specifically absent or insufficient in disease-manifesting tissues. Although this conception has critical impact on the understanding of disease manifestation, it was never challenged in a systematic manner across a variety of hereditary diseases and affected tissues. Here, we address this gap in our understanding via rigorous analysis of the susceptibility of over 30 tissues to 112 tissue-selective hereditary diseases. We focused on the roles of paralogs of causal genes, which are presumably capable of compensating for their aberration. We show for the first time at large-scale via quantitative analysis of omics datasets that, preferentially in the disease-manifesting tissues, paralogs are under-expressed relative to causal genes in more than half of the diseases. This was observed for several susceptible tissues and for causal genes with varying number of paralogs, suggesting that imbalanced expression of paralogs increases tissue susceptibility. While for many diseases this imbalance stemmed from up-regulation of the causal gene in the disease-manifesting tissue relative to other tissues, it was often combined with down-regulation of its paralog. Notably in roughly 20% of the cases, this imbalance stemmed only from significant down-regulation of the paralog. Thus, dosage relationships between paralogs appear as important, yet currently under-appreciated, modifiers of disease manifestation.
Molecular Cell | 2018
Netta Shemesh; Anat Ben-Zvi
A new mechanism for clearing protein damage from maturing oocytes has been described in a recent study by Bohnert and Kenyon (2017), who demonstrated that sperm-secreted hormones activate a vascular H+-ATPase pump that acidifies lysosomes and thus restores protein homeostasis.
Frontiers in Molecular Neuroscience | 2017
Netta Shemesh; Lana Meshnik; Nufar Shpigel; Anat Ben-Zvi
Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis). One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA) that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA), a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust proteostasis. Given the critical role of proteostatic networks in the onset and progression of many aging-related diseases, such a choice could impact susceptibility to protein misfolding diseases later in life.