Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nevis Fregien is active.

Publication


Featured researches published by Nevis Fregien.


Journal of Biological Chemistry | 1999

AN INTRAMEMBRANE MODULATOR OF THE ERBB2 RECEPTOR TYROSINE KINASE THAT POTENTIATES NEUREGULIN SIGNALING

Kermit L. Carraway; Edmund A. Rossi; Masanobu Komatsu; Shari A. Price-Schiavi; Daming Huang; Pamela M. Guy; Maria E. Carvajal; Nevis Fregien

The ErbB2 receptor tyrosine kinase plays a critical role in a variety of developmental processes, and its aberrant activation may contribute to the progression of some breast and ovarian tumors. ASGP2, a transmembrane glycoprotein found on the surface of the highly metastatic ascites 13762 rat mammary adenocarcinoma cell line, is constitutively associated with ErbB2 in these cells and in mammary tissue from pregnant rats. Expression studies indicate that ASGP2 interacts directly and specifically with ErbB2 through one of its epidermal growth factor-like domains and that the co-expression of the two proteins in the same cell dramatically facilitates their direct stable interaction. Ectopic expression of ASGP2 in human melanoma tumor cells potentiates the response of endogenous ErbB2 to the neuregulin-1 growth factor. These observations point to a novel intramembrane mechanism for the modulation of receptor tyrosine kinase activity.


American Journal of Respiratory Cell and Molecular Biology | 2009

Pannexin 1 Contributes to ATP Release in Airway Epithelia

George Ransford; Nevis Fregien; Gerhard Dahl; Gregory E. Conner; Matthias Salathe

ATP is a paracrine regulator of critical airway epithelial cell functions, but the mechanism of its release is poorly understood. Pannexin (Panx) proteins, related to invertebrate innexins, form channels (called pannexons) that are able to release ATP from several cell types. Thus, ATP release via pannexons was examined in airway epithelial cells. Quantitative RT-PCR showed Panx1 expression in normal human airway epithelial cells during redifferentiation at the air-liquid interface (ALI), at a level comparable to that of alveolar macrophages; Panx3 was not expressed. Immunohistochemistry showed Panx1 expression at the apical pole of airway epithelia. ALI cultures exposed to hypotonic stress released ATP to an estimated maximum of 255 (+/-64) nM within 1 minute after challenge (n = 6 cultures from three different lungs) or to approximately 1.5 (+/-0.4) microM, recalculated to a normal airway surface liquid volume. Using date- and culture-matched cells (each n > or = 16 from 4 different lungs), the pannexon inhibitors carbenoxolone (10 microM) and probenecid (1 mM), but not the connexon inhibitor flufenamic acid (100 microM), inhibited ATP release by approximately 60%. The drugs affected Panx1 currents in Xenopus oocytes expressing exogenous Panx1 correspondingly. In addition, suppression of Panx1 expression using lentivirus-mediated production of shRNA in differentiated airway epithelial cells inhibited ATP release upon hypotonic stress by approximately 60% as well. These data not only show that Panx1 is expressed apically in differentiated airway epithelial cells but also that it contributes to ATP release in these cells.


Journal of Biological Chemistry | 1997

Reversible Disruption of Cell-Matrix and Cell-Cell Interactions by Overexpression of Sialomucin Complex

Masanobu Komatsu; Nevis Fregien; Kermit L. Carraway

Sialomucin complex (SMC) is a large, heterodimeric glycoprotein complex composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits and expressed abundantly on the cell surface of ascites 13762 rat mammary adenocarcinoma cells. We have isolated recombinant cDNAs containing different numbers of ASGP-1 mucin repeats, which can be expressed as protein products with variable lengths. To study the anti-adhesive effect of SMC, these cDNAs were transfected into human cancer cell lines. Using a tetracycline-responsive, inducible expression system, we demonstrated that the overexpression of SMC induces morphology changes, cell detachment, and cell-cell dissociation of transfected A375 human melanoma cells in culture. The transition between the adherent and suspension states of the cells is fully reversible and dependent on the SMC expression level. The anti-adhesion effect of SMC was further analyzed kinetically by measuring the cell adhesion of transfected A375 melanoma and MCF-7 breast cancer cell lines to fibronectin, laminin, and collagen IV, demonstrating that SMC disrupts integrin-mediated cell adhesion to extracellular matrix proteins. The degree of this anti-adhesion effect was dependent on the number of mucin repeats in the SMC molecule as well as the level of cell surface expression.


Journal of Biological Chemistry | 1996

Sialomucin Complex, a Heterodimeric Glycoprotein Complex EXPRESSION AS A SOLUBLE, SECRETABLE FORM IN LACTATING MAMMARY GLAND AND COLON

Edmund A. Rossi; Richard R. McNeer; Shari A. Price-Schiavi; Jan M.H. van den Brande; Masanobu Komatsu; John F. Thompson; Nevis Fregien; Kermit L. Carraway

Ascites 13762 rat mammary adenocarcinoma cells express abundantly on their cell surfaces a heterodimeric glycoprotein complex composed of a sialomucin ascites sialoglycoprotein (ASGP)-1 and a transmembrane subunit ASGP-2. The latter, which contains two epidermal growth factor-like domains, binds the receptor tyrosine kinase p185neu, suggesting that the complex is bifunctional as well as heterodimeric. Immunoblot analyses using monoclonal antibodies prepared against the complex demonstrate high levels of expression in rat lactating mammary gland and colon. Immunolocalization studies with anti-ASGP-2 indicate that ASGP-2 is present in these two tissues in the apical regions of secretory epithelial cells. Both mammary gland and colon contain a soluble, secretable form of ASGP-2, which is not found in the ascites cells; milk and mammary gland also have the membrane form. Immunoblot analyses using a COOH-terminal-specific polyclonal antibody indicate that the soluble form of ASGP-2 is missing its COOH-terminal domains. Both the soluble and membrane forms of ASGP-2 are similar to the membrane-associated form from the 13762 adenocarcinoma with respect to Mr, antigenicity, and association with ASGP-1. The presence of ASGP-1 in milk suggests that it is a candidate for the uncharacterized high Mr milk mucin, MUCX. ASGP-2 expression is up-regulated in mammary gland during pregnancy, because it is undetectable in virgin and early pregnant rats but abundant in the gland from late pregnant and lactating animals. However, compared with the lactating mammary gland, the 13762 ascites cells overexpress ASGP-2 by more than 100-fold, which may contribute to their malignancy. These combined results indicate that sialomucin complex is a unique secreted product in the mammary gland and colon, whose behavior is different from that in the mammary ascites tumors, and which may play important roles in mammary and intestinal physiology.


Oncogene | 1998

The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products.

Lin Chen; Wei-jie Zhang; Nevis Fregien; Michael Pierce

Malignant transformation is associated with changes in the glycosylation of cell surface proteins. For example, the N-linked oligosaccharides containing the [GlcNAcβ(1,6)Man] branch are increased after transformation of many cell types by a number of tumor viruses and oncogenes which induce the expression of N-acetylglucosaminyl-transferase V (GlcNAc-T V), the enzyme that adds this branch. A large percentage of human breast carcinomas have increased N-linked β(1,6) branches on glycoproteins, while up to 30% of breast carcinomas have amplified the oncogene her-2/neu (erb-B2). We tested the hypothesis that expression of her-2/neu stimulates GlcNAc-T V gene expression and increases the β(1,6) branching of N-linked oligosaccharides. We found that neu-transformed NIH3T3 cells have a threefold increase in GlcNAc-T V enzyme activity and increased β(1,6) branching on a specific set of glycoproteins. Promoter/reporter experiments showed that her-2/neu stimulates transcription from the human GlcNAc-T V promoter and that the her-2/neu response element was located about 400 bp 5′ of the transcription initiation site and includes three Ets transcription factor binding sequences. Co-transfections with dominant-negative Raf and Ets expression plasmids demonstrated that the transcriptional activation of the GlcNAc-T V promoter by neu is mediated by the Ras-Raf-Ets signal transduction pathway.


The Journal of General Physiology | 2007

Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP

Andreas Schmid; Zoltan Sutto; Marie Christine Nlend; Gabor Horvath; Nathalie Schmid; Jochen Buck; Lonny R. Levin; Gregory E. Conner; Nevis Fregien; Matthias Salathe

Ciliated airway epithelial cells are subject to sustained changes in intracellular CO2/HCO3 − during exacerbations of airway diseases, but the role of CO2/HCO3 −-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO2/HCO3 −-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO2/HCO3 −-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO2/HCO3 − increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.


Journal of Biological Chemistry | 2010

Reactive Oxygen Species and Hyaluronidase 2 Regulate Airway Epithelial Hyaluronan Fragmentation

Maria E. Monzon; Nevis Fregien; Nathalie Schmid; Nieves S. Falcon; Michael Campos; S. Marina Casalino-Matsuda; Rosanna Forteza

Hyaluronidase 2 (Hyal2) is a hyaluronan (HA)-degrading enzyme found intracellularly or/and anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). Normal human bronchial epithelial cells (NHBE) grown at the air-liquid interphase (ALI), treated with PI-specific phospholipase C (PI-PLC), exhibited increased Hyal activity in secretions and decreased protein and activity on the apical membrane, confirming that GPI-anchored Hyal2 is expressed in NHBE cells and it remains active in its soluble form. We have reported that HA degradation was mediated by reactive oxygen species (ROS) in human airways. Here we show that ROS increase Hyal2 expression and activity in NHBE cells and that the p38MAPK signaling pathway is involved in this effect. Hyal2 induction was confirmed by using small interfering RNA (siRNA) expressing lentivirus. These in vitro findings correlated in vivo with smokers, where increased Hyal2 immunoreactivity in the epithelium was associated with augmented levels of HA and the appearance of low molecular mass HA species in bronchial secretions. In summary, this work provides evidence that ROS induce Hyal2, suggesting that Hyal2 is likely responsible for the sustained HA fragmentation in the airway lumen observed in inflammatory conditions associated with oxidative stress.


Free Radical Biology and Medicine | 2009

Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli

Monica Valencia Gattas; Radia Forteza; Miryam A. Fragoso; Nevis Fregien; Pedro J. Salas; Matthias Salathe; Gregory E. Conner

Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H(2)O(2)), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H(2)O(2) for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-gamma. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-gamma increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-gamma. Both stimuli increased H(2)O(2) synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H(2)O(2) production, whereas Duox2 siRNA markedly reduced basal H(2)O(2) production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H(2)O(2) production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H(2)O(2) levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H(2)O(2) synthesis despite the presence of greater amounts of Duox1.


Glycoconjugate Journal | 1997

Regulation of N-acetylglucosaminyltransferase V and Asn-linked oligosaccharide β(1,6) branching by a growth factor signaling pathway and effects on cell adhesion and metastatic potential

Michael Pierce; Philip Buckhaults; Lin Chen; Nevis Fregien

Recent evidence demonstrates that the changes in the size of N-linked oligosaccharides that correlate with cell transformation and tumorigenicity are due at least in part to the regulation of expression of a glycosyltransferase involved in the branching of N-linked structures, N-acetylglucosaminyltransferase V or GlcNAc-T V. Studies have shown that the increases in GlcNAc-T V expression after oncogenic transformation are most likely caused by direct effects on the GlcNAc-T V promoter by the Ets family of transcriptional activators, which are up-regulated by a cellular proliferation signaling pathway. This pathway begins with growth factor receptors that activate tyrosine kinases at the cell surface and proceeds through src, ras, and raf. Additional evidence for the association between cellular proliferation and GlcNAc-T V expression will be presented, as well as a discussion of the effects of β(1,6) branching on several of the phenotypes of oncogenically transformed cells, including metastatic potential.


Journal of Cell Science | 2008

Atypical protein kinase C (iota) activates ezrin in the apical domain of intestinal epithelial cells.

Flavia A. Wald; Andrea S. Oriolo; Anastasia Mashukova; Nevis Fregien; Amber H. Langshaw; Pedro J. Salas

Atypical protein kinase iota (PKCι) is a key organizer of the apical domain in epithelial cells. Ezrin is a cytosolic protein that, upon activation by phosphorylation of T567, is localized under the apical membrane where it connects actin filaments to membrane proteins and recruits protein kinase A (PKA). To identify the kinase that phosphorylates ezrin T567 in simple epithelia, we analyzed the expression of active PKC and the appearance of T567-P during enterocyte differentiation in vivo. PKCι phosphorylated ezrin on T567 in vitro, and in Sf9 cells that do not activate human ezrin. In CACO-2 human intestinal cells in culture, PKCι co-immunoprecipitated with ezrin and was knocked down by shRNA expression. The resulting phenotype showed a modest decrease in total ezrin, but a steep decrease in T567 phosphorylation. The PKCι-depleted cells showed fewer and shorter microvilli and redistribution of the PKA regulatory subunit. Expression of a dominant-negative form of PKCι also decreased T567-P signal, and expression of a constitutively active PKCι mutant showed depolarized distribution of T567-P. We conclude that, although other molecular mechanisms contribute to ezrin activation, apically localized phosphorylation by PKCι is essential for the activation and normal distribution of ezrin at the early stages of intestinal epithelial cell differentiation.

Collaboration


Dive into the Nevis Fregien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge