Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nguan Soon Tan is active.

Publication


Featured researches published by Nguan Soon Tan.


Journal of Cell Biology | 2001

Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice

Liliane Michalik; Béatrice Desvergne; Nguan Soon Tan; Sharmila Basu-Modak; Pascal Escher; Jennifer Rieusset; Jeffrey M. Peters; Gürkan Kaya; Frank J. Gonzalez; Jozsef Zakany; Daniel Metzger; Pierre Chambon; Denis Duboule; Walter Wahli

We show here that the α, β, and γ isotypes of peroxisome proliferator–activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARα and β expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARα, β, and γ mutant mice, we demonstrate that PPARα and β are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARα is mainly involved in the early inflammation phase of the healing, whereas PPARβ is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARβ mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARα and β in adult mouse epidermal repair.


Molecular and Cellular Biology | 2002

Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription

Nguan Soon Tan; Natacha S. Shaw; Nicolas Vinckenbosch; Peng Liu; Rubina Yasmin; Béatrice Desvergne; Walter Wahli; Noa Noy

ABSTRACT Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARγ and PPARβ, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARγ and PPARβ and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARβ-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.


Molecular Cell | 2002

Antiapoptotic Role of PPARβ in Keratinocytes via Transcriptional Control of the Akt1 Signaling Pathway

Nicolas Di-Poı̈; Nguan Soon Tan; Liliane Michalik; Walter Wahli; Béatrice Desvergne

Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.


Biochemical Journal | 2005

The G0/G1 switch gene 2 is a novel PPAR target gene

Fokko Zandbergen; Stéphane Mandard; Pascal Escher; Nguan Soon Tan; David Patsouris; Tim Jatkoe; Sandra Rojas-Caro; Steve Madore; Walter Wahli; Sherrie Tafuri; Michael Müller; Sander Kersten

PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.


Molecular and Cellular Biology | 2006

Differentiation of Trophoblast Giant Cells and Their Metabolic Functions Are Dependent on Peroxisome Proliferator-Activated Receptor β/δ

Karim Nadra; Silvia I. Anghel; Elisabeth Joye; Nguan Soon Tan; Sharmila Basu-Modak; Didier Trono; Walter Wahli; Béatrice Desvergne

ABSTRACT Mutation of the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARβ/δ-null mutant embryos. While very little is known at present about the pathway governed by PPARβ/δ in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARβ/δ-null embryos is found in the giant cell layer. PPARβ/δ activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARβ/δ is silenced. Conversely, exposure of Rcho-1 cells to a PPARβ/δ agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARβ/δ activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARβ/δ also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARβ/δ-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARβ/δ in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARβ/δ agonist as therapeutic agents of broad application.


Journal of Clinical Investigation | 2004

PPARα governs glycerol metabolism

David Patsouris; Stéphane Mandard; Peter J. Voshol; Pascal Escher; Nguan Soon Tan; Louis M. Havekes; Wolfgang Koenig; Winfried März; Sherrie Tafuri; Walter Wahli; Michael Müller; Sander Kersten

Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.


Cancer Cell | 2011

Angiopoietin-like 4 Protein Elevates the Prosurvival Intracellular O2−:H2O2 Ratio and Confers Anoikis Resistance to Tumors

Pengcheng Zhu; Ming Jie Tan; Royston Luke Huang; Chek Kun Tan; Han Chung Chong; Mintu Pal; Chee Ren Ivan Lam; Petra Boukamp; Jiun Yit Pan; Suat Hoon Tan; Sander Kersten; Hoi-Yeung Li; J. Ding; Nguan Soon Tan

Cancer is a leading cause of death worldwide. Tumor cells exploit various signaling pathways to promote their growth and metastasis. To our knowledge, the role of angiopoietin-like 4 protein (ANGPTL4) in cancer remains undefined. Here, we found that elevated ANGPTL4 expression is widespread in tumors, and its suppression impairs tumor growth associated with enhanced apoptosis. Tumor-derived ANGPTL4 interacts with integrins to stimulate NADPH oxidase-dependent production of O(2)(-). A high ratio of O(2)(-):H(2)O(2) oxidizes/activates Src, triggering the PI3K/PKBα and ERK prosurvival pathways to confer anoikis resistance, thus promoting tumor growth. ANGPTL4 deficiency results in diminished O(2)(-) production and a reduced O(2)(-):H(2)O(2) ratio, creating a cellular environment conducive to apoptosis. ANGPTL4 is an important redox player in cancer and a potential therapeutic target.


Cell Metabolism | 2010

Angptl4 Protects against Severe Proinflammatory Effects of Saturated Fat by Inhibiting Fatty Acid Uptake into Mesenteric Lymph Node Macrophages

Laeticia Lichtenstein; Frits Mattijssen; Nicole de Wit; Anastasia Georgiadi; Guido Hooiveld; Roelof van der Meer; Yin He; Ling Qi; Anja Köster; Jouke T. Tamsma; Nguan Soon Tan; Michael Müller; Sander Kersten

Dietary saturated fat is linked to numerous chronic diseases, including cardiovascular disease. Here we study the role of the lipoprotein lipase inhibitor Angptl4 in the response to dietary saturated fat. Strikingly, in mice lacking Angptl4, saturated fat induces a severe and lethal phenotype characterized by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and cachexia. These abnormalities are preceded by a massive acute phase response induced by saturated but not unsaturated fat or medium-chain fat, originating in mesenteric lymph nodes (MLNs). MLNs undergo dramatic expansion and contain numerous lipid-laden macrophages. In peritoneal macrophages incubated with chyle, Angptl4 dramatically reduced foam cell formation, inflammatory gene expression, and chyle-induced activation of ER stress. Induction of macrophage Angptl4 by fatty acids is part of a mechanism that serves to reduce postprandial lipid uptake from chyle into MLN-resident macrophages by inhibiting triglyceride hydrolysis, thereby preventing macrophage activation and foam cell formation and protecting against progressive, uncontrolled saturated fat-induced inflammation.


Bioscience Reports | 2012

Angiopoietin-like 4: a decade of research

Pengcheng Zhu; Yan Yih Goh; Hwee Fang Alison Chin; Sander Kersten; Nguan Soon Tan

The past decade has seen a rapid development and increasing recognition of ANGPTL4 (angiopoietin-like 4) as a remarkably multifaceted protein that is involved in many metabolic and non-metabolic conditions. ANGPTL4 has been recognised as a central player in various aspects of energy homoeostasis, at least in part, via the inhibitory interaction between the coiled-coil domain of ANGPTL4 and LPL (lipoprotein lipase). The fibrinogen-like domain of ANGPTL4 interacts and activates specific integrins to facilitate wound healing, modulates vascular permeability, and regulates ROS (reactive oxygen species) level to promote tumorigenesis. The present review summarizes these landmark findings about ANGPTL4 and highlights several important implications for future clinical practice. Importantly, these implications have also raised many questions that are in urgent need of further investigations, particularly the transcription regulation of ANGPTL4 expression, and the post-translation cleavage and modifications of ANGPTL4. The research findings over the past decade have laid the foundation for a better mechanistic understanding of the new scientific discoveries on the diverse roles of ANGPTL4.


Experimental Cell Research | 2010

Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage.

Chor Yong Tay; Haiyang Yu; Mintu Pal; Wen Shing Leong; Nguan Soon Tan; Kee Woei Ng; David Tai Leong; Lay Poh Tan

Stem cell response can be influenced by a multitude of chemical, topological and mechanical physiochemical cues. While extensive studies have been focused on the use of soluble factors to direct stem cell differentiation, there are growing evidences illustrating the potential to modulate stem cell differentiation via precise engineering of cell shape. Fibronectin were printed on poly(lactic-co-glycolic acid) (PLGA) thin film forming spatially defined geometries as a means to control the morphology of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs that were cultured on unpatterned substrata adhered and flattened extensively (approximately 10,000 microm(2)) while cells grown on 20 microm micropatterend wide adhesive strips were highly elongated with much smaller area coverage of approximately 2000 microm(2). Gene expression analysis revealed up-regulation of several hallmark markers associated to neurogenesis and myogenesis for cells that were highly elongated while osteogenic markers were specifically down-regulated or remained at its nominal level. Even though there is clearly upregulated levels of both neuronal and myogenic lineages but at the functionally relevant level of protein expression, the myogenic lineage is dominant within the time scale studied as determined by the exclusive expression of cardiac myosin heavy chain for the micropatterned cells. Enforced cell shape distortion resulting in large scale rearrangement of cytoskeletal network and altered nucleus shape has been proposed as a physical impetus by which mechanical deformation is translated into biochemical response. These results demonstrated for the first time that cellular shape modulation in the absence of any induction factors may be a viable strategy to coax lineage-specific differentiation of stem cells.

Collaboration


Dive into the Nguan Soon Tan's collaboration.

Top Co-Authors

Avatar

J. Ding

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Walter Wahli

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Bow Ho

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pengcheng Zhu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Han Chung Chong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Sander Kersten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cleo Choong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ming Jie Tan

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge