Nguyen Xuan Nhiem
Vietnam Academy of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nguyen Xuan Nhiem.
Archives of Pharmacal Research | 2007
Pham Hai Yen; Phan Van Kiem; Nguyen Xuan Nhiem; Nguyen Huu Tung; Tran Hong Quang; Chau Van Minh; Jung Woo Kim; Eun Mi Choi; Young Ho Kim
A new monoterpene glycoside, 6’-O-β-D-glucopyranosylalbiflorin (1), and four known compounds; albiflorin (2), 6’-O-benzoylalbiflorin (3), paeoniflorin (4) and benzoyl paeoniflorin (5), were isolated from the methanolic extract of the roots ofPaeonia lactiflora Pall.. Their chemical structures were completely elucidated using a combination of 2D NMR techniques (COSY, HMQC and HMBC) and HRESI-MS analyses. To investigate the bioactivities of these compounds, their effects on the differentiation of osteoblastic MC3T3-E1 cells were tested. Compound 1 (0.01-10 μM) significantly increased the alkaline phosphatase activity and nodules mineralization of MC3T3-E1 cells compared to those of the control (P<0.05). These results suggest that newly isolated compound 1 has a direct stimulatory effect on bone formationin vitro and may contribute to the prevention for osteoporosis.
Journal of Agricultural and Food Chemistry | 2010
Nguyen Huu Tung; Gyu Yong Song; Nguyen Xuan Nhiem; Yan Ding; Bui Huu Tai; Long Guo Jin; Chae-Moon Lim; Jin Won Hyun; Chun Jung Park; Hee Kyoung Kang; Young Ho Kim
Korean ginseng (Panax ginseng C.A. Meyer) has been extensively used as a functional food for thousands of years. This study with the aim to evaluate the potential of P. ginseng flower components as a functional food with medicinal properties resulted in the identification of three new dammarane-type saponins, named floralginsenosides Ka-Kc (1-3), along with seventeen known ones (4-20). Their structures were elucidated on the basis of chemical and spectroscopic methods, and their antioxidant activities were evaluated by the intracellular ROS radical scavenging DCF-DA assay. Among them, floralginsenoside Ka (1) displayed potent scavenging activity with the inhibition value of 64% at 10 microM; and ginsenoside Rb(1) (13), floralginsenoside Kc (3), floralginsenoside Kb (2), vinaginsenoside R(9) (11), majoroside F(1) (12), ginsenoside I (17), and ginsenoside II (18) showed moderate scavenging capacity with the inhibition rate of 28, 33, 35, 35, 35, 38, and 38% at 10 microM, respectively. These results warrant further studies concerning the potential of saponin extracts of P. ginseng flowers for functional foods.
Bioorganic & Medicinal Chemistry Letters | 2011
Nguyen Xuan Nhiem; Bui Huu Tai; Tran Hong Quang; Phan Van Kiem; Chau Van Minh; Nguyen Hoai Nam; Jun-Ho Kim; Lee-Rang Im; Young-Mi Lee; Young Ho Kim
One new ursane-type triterpenoid glycoside, asiaticoside G (1), five triterpenoids, asiaticoside (2), asiaticoside F (3), asiatic acid (4), quadranoside IV (5), and 2α,3β,6β-trihydroxyolean-12-en-28-oic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl] ester (6), and four flavonoids, kaempferol (7), quercetin (8), astragalin (9), and isoquercetin (10) were isolated from the leaves of Centella asiatica. Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The structure of new compound 1 was determined to be 2α,3β,23,30-tetrahydroxyurs-12-en-28-oic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl] ester. The anti-inflammatory activities of the isolated compounds were investigated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Asiaticoside G (1) potently inhibited the production of nitric oxide and tumor necrosis factor-α with inhibition rates of 77.3% and 69.0%, respectively, at the concentration of 100 μM.
Bioorganic & Medicinal Chemistry Letters | 2009
Do Thi Ha; Dao Trong Tuan; Nguyen Bich Thu; Nguyen Xuan Nhiem; Tran Minh Ngoc; NamHui Yim; KiHwan Bae
Moutan Cortex is a well-known herb in traditional Korean, Chinese, and Japanese anti-diabetic formulae. In the current study, we investigated the metabolic effects of isolated triterpenes (1-7) in HepG2 cells under high glucose conditions. These compounds remakably stimulated AMP-activated protein kinase (AMPK), GSK-3beta, and ACC phosphorylation. The compounds also increased glucose uptake and enhanced glycogen synthesis. Among these, compound 1 displayed the greatest potential anti-diabetic activity though the AMPK activation pathway. Compound 1 significantly increased the levels of phospho-AMPK, phospho-ACC, and phospho-GSK-3beta and stimulated glucose uptake and glycogen synthesis in a dose-dependent manner. In conclusion, our results suggest that these compounds, especially compound 1, may have beneficial roles in glucose metabolism via the AMPK pathway.
Bioorganic & Medicinal Chemistry Letters | 2009
Nguyen Huu Tung; Chau Van Minh; Tran Thu Ha; Phan Van Kiem; Hoang Thanh Huong; Nguyen Tien Dat; Nguyen Xuan Nhiem; Bui Huu Tai; Jae-Hee Hyun; Hee-Kyoung Kang; Young Ho Kim
Two new C(29) sterols with a cyclopropane ring at C-25 and C-26, petrosterol-3,6-dione (1) and 5alpha,6alpha-epoxy-petrosterol (2), along with petrosterol (3), were isolated from the Vietnamese marine sponge Ianthella sp. The structures of the new compounds were elucidated by comprehensive spectroscopic analyses. Compounds 1-3 showed cytotoxic activities on A549, HL-60, MCF-7, SK-OV-3, and U937 cancer cell lines with IC(50) in the range of 8.4-22.6 microM, whereas compounds 1-3 exhibited only weak cytotoxic activities on HT-29 cell. After HL-60 cells were treated with the compounds, several apoptosis events like chromatin condensation and the increase of the population of sub-G1 hypodiploid cells were observed. These data supported that the compounds might have potential for leukemia treatment.
Fitoterapia | 2008
Alessandra Braca; Phan Van Kiem; Pham Hai Yen; Nguyen Xuan Nhiem; Tran Hong Quang; Nguyen Xuan Cuong; Chau Van Minh
Three new monoterpene glycosides named 4-O-methyl-paeoniflorin (1), isopaeoniflorin (2), and isobenzoylpaeoniflorin (3), together with two known monoterpene glycosides, paeoniflorin (4) and benzoylpaeoniflorin (5), were isolated from the roots of Paeonia lactiflora. Their structures were established on the basis of spectral and chemical evidence.
Journal of Natural Products | 2013
Nguyen Phuong Thao; Nguyen Xuan Cuong; Bui Thi Thuy Luyen; Nguyen Van Thanh; Nguyen Xuan Nhiem; Young-Sang Koh; Bui Minh Ly; Nguyen Hoai Nam; Phan Van Kiem; Chau Van Minh; Young Ho Kim
Four new asterosaponins, astrosteriosides A-D (1-3 and 5), and two known compounds, psilasteroside (4) and marthasteroside B (6), were isolated from the MeOH extract of the edible Vietnamese starfish Astropecten monacanthus. Their structures were elucidated by chemical and spectroscopic methods including FTICRMS and 1D and 2D NMR experiments. The effects of the extracts and isolated compounds on pro-inflammatory cytokines were evaluated by measuring the production of IL-12 p40, IL-6, and TNF-α in LPS-stimulated bone marrow-derived dendritic cells. Compounds 1, 5, and 6 exhibited potent anti-inflammatory activity comparable to that of the positive control. Further studies are required to confirm efficacy in vivo and the mechanism of effects. Such potent anti-inflammatory activities render compounds 1, 5, and 6 important materials for further applications including complementary inflammation remedies and/or functional foods and nutraceuticals.
Bioorganic & Medicinal Chemistry | 2011
Tran Hong Quang; Tran Thu Ha; Chau Van Minh; Phan Van Kiem; Hoang Thanh Huong; Nguyen Thi Thanh Ngan; Nguyen Xuan Nhiem; Nguyen Huu Tung; Bui Huu Tai; Dinh Thi Thu Thuy; Seok Bean Song; Hee-Kyoung Kang; Young Ho Kim
Four new cembranoids, namely laevigatol A-D (1-4), and six known metabolites (5-10), were isolated from the Vietnamese soft coral Lobophytum laevigatum. The structures of these compounds were elucidated by extensive spectroscopic analyses, and the absolute stereochemistry of 1 was determined using the modified Moshers method. Compounds 5, and 7-10 exhibited cytotoxic activity against selected human cancer cell lines. Compounds 1, 2, 8, and 9 showed dose-dependent inhibitory effects on the TNFα-induced NF-κB transcriptional activity in Hep-G2 cells. Moreover, compounds 1, 2, 8, and 9 significantly inhibited the induction of COX-2 and iNOS mRNA dose-dependently, indicating that these compounds attenuated the synthesis of these transcripts at the transcriptional level.
Bioorganic & Medicinal Chemistry Letters | 2011
Nguyen Xuan Nhiem; Ho Young Lim; Phan Van Kiem; Chau Van Minh; Vu Kim Thu; Bui Huu Tai; Tran Hong Quang; Seok Bean Song; Young Ho Kim
Two new oleanane-type triterpene saponins, tarasaponin IV (1) and elatoside L (2), and four known; stipuleanoside R(2) (3), kalopanax-saponin F (4), kalopanax-saponin F methylester (5), and elatoside D (6) were isolated from the bark of Aralia elata. Kalopanax-saponin F methyl ester was isolated from nature for the first time. Their chemical structures were elucidated using the chemical and physical methods as well as good agreement with those of reported in the literature. Oleanane-type triterpene saponins are the main component of A. elata. All compounds were investigated the anti-inflammatory activity. We measured their inhibition of NF-κB and activation of PPARs activities in HepG2 cells using luciferase reporter system. As results, compounds 2 and 4 were found to inhibit NF-κB activation stimulated by TNFα in a dose-dependent manner with IC(50) values of 4.1 and 9.5 μM, respectively, when compared with that of positive control, sulfasalazine (0.9 μM). Compounds 2 and 4 also inhibited TNFα-induced expression of iNOS and COX-2 mRNA. Furthermore, compounds 1-6 were evaluated PPAR activity using PPAR subtype transactivation assays. Among of them, compounds 4-6 significantly increased PPARγ transactivation. However, compounds 4-6 did not activate in any other PPAR subtypes.
Journal of Ethnopharmacology | 2012
Jung-Jin Lee; Hyoseok Yi; In-Su Kim; Yohan Kim; Nguyen Xuan Nhiem; Young Ho Kim; Chang-Seon Myung
ETHNOPHARMACOLOGICAL RELEVANCE Typha angustata is used in traditional Chinese medicine for a variety of clinical disorders. Its pharmacological actions include beneficial effects on hyperlipidemia and myocardial infarction, as well as labor-inducing and antibacterial effects. AIM OF THE STUDY We investigated the mechanism underlying the ability of (2S)-naringenin, an active compound from Typha angustata, to inhibit the proliferation of vascular smooth muscle cells (VSMCs). MATERIALS AND METHODS After measuring the antiproliferative effect of (2S)-naringenin on VSMC proliferation using cell proliferation and viability assays, the possible involvement of a signaling pathway associated with platelet-derived growth factor receptor β (PDGF-Rβ), extracellular signal regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K)-linked protein kinase B (Akt/PKB), or phospholipase C-γ1 (PLCγ1) was investigated by immunoblotting. Moreover, the effect of (2S)-naringenin on DNA synthesis and the cell cycle was examined using a [(3)H]-thymidine incorporation assay and flow cytometry. RESULTS (2S)-Naringenin significantly inhibited PDGF-BB-induced VSMC proliferation in a concentration-dependent manner, but did not affect signaling pathways associated with PDGF-Rβ, Akt/PKB, ERK1/2, or PLCγ1. However, (2S)-naringenin suppressed DNA synthesis via a G(0)/G(1) cell cycle arrest. Accordingly, the expression of cyclins D1 and E and cyclin-dependent kinases 2 and 4 was inhibited in a concentration-dependent manner; moreover, the phosphorylation of retinoblastoma protein was suppressed. CONCLUSIONS Our results show that (2S)-naringenin inhibited the PDGF-BB-induced proliferation of VSMCs via a G(0)/G(1) arrest; thus, (2S)-naringenin may be valuable as a therapeutic agent for managing atherosclerosis and/or vascular restenosis.