Niall Anthony Gormley
Illumina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niall Anthony Gormley.
The ISME Journal | 2012
J. Gregory Caporaso; Christian L. Lauber; William A. Walters; Donna Berg-Lyons; James Huntley; Noah Fierer; Sarah M. Owens; Jason Richard Betley; Louise Fraser; Markus J. Bauer; Niall Anthony Gormley; Jack A. Gilbert; Geoff Smith; Rob Knight
DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.
Nature | 2010
Erin Pleasance; R. Keira Cheetham; Philip Stephens; David J. McBride; Sean Humphray; Christopher Greenman; Ignacio Varela; Meng-Lay Lin; Gonzalo R. Ordóñez; Graham R. Bignell; Kai Ye; Julie A Alipaz; Markus J. Bauer; David Beare; Adam Butler; Richard J. Carter; Lina Chen; Anthony J. Cox; Sarah Edkins; Paula Kokko-Gonzales; Niall Anthony Gormley; Russell Grocock; Christian D. Haudenschild; Matthew M. Hims; Terena James; Mingming Jia; Zoya Kingsbury; Catherine Leroy; John Marshall; Andrew Menzies
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.
Cell | 2012
Elizabeth P. Murchison; Ole Schulz-Trieglaff; Zemin Ning; Ludmil B. Alexandrov; Markus J. Bauer; Beiyuan Fu; Matthew M. Hims; Zhihao Ding; Sergii Ivakhno; Caitlin Stewart; Bee Ling Ng; Wendy Wong; Bronwen Aken; Simon White; Amber E. Alsop; Jennifer Becq; Graham R. Bignell; R. Keira Cheetham; William Cheng; Thomas Richard Connor; Anthony J. Cox; Zhi-Ping Feng; Yong Gu; Russell Grocock; Simon R. Harris; Irina Khrebtukova; Zoya Kingsbury; Mark Kowarsky; Alexandre Kreiss; Shujun Luo
Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip
Blood | 2011
Nicolas Gillet; Nirav Malani; Anat Melamed; Niall Anthony Gormley; Richard J. Carter; David R. Bentley; Charles C. Berry; Frederic D. Bushman; Graham P. Taylor; Charles R. M. Bangham
Human T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown. We devised a high-throughput protocol to map the genomic location and quantify the abundance of > 91,000 unique insertion sites of the provirus from 61 HTLV-1(+) persons and > 2100 sites from in vitro infection. We show that a typical HTLV-1-infected host carries between 500 and 5000 unique insertion sites. We demonstrate that negative selection dominates during chronic infection, favoring establishment of proviruses integrated in transcriptionally silenced DNA: this selection is significantly stronger in asymptomatic carriers. We define a parameter, the oligoclonality index, to quantify clonality. The high proviral load characteristic of HTLV-1-associated inflammatory disease results from a larger number of unique insertion sites than in asymptomatic carriers and not, as previously thought, from a difference in clonality. The abundance of established HTLV-1 clones is determined by genomic features of the host DNA flanking the provirus. HTLV-1 clonal expansion in vivo is favored by orientation of the provirus in the same sense as the nearest host gene.
Nature Biotechnology | 2011
Hamidreza Chitsaz; Joyclyn Yee-Greenbaum; Glenn Tesler; Mary-Jane Lombardo; Christopher L. Dupont; Jonathan H. Badger; Mark Novotny; Douglas B. Rusch; Louise Fraser; Niall Anthony Gormley; Ole Schulz-Trieglaff; Geoffrey Paul Smith; Dirk Evers; Pavel A. Pevzner; Roger S. Lasken
Whole genome amplification by the multiple displacement amplification (MDA) method allows sequencing of DNA from single cells of bacteria that cannot be cultured. Assembling a genome is challenging, however, because MDA generates highly nonuniform coverage of the genome. Here we describe an algorithm tailored for short-read data from single cells that improves assembly through the use of a progressively increasing coverage cutoff. Assembly of reads from single Escherichia coli and Staphylococcus aureus cells captures >91% of genes within contigs, approaching the 95% captured from an assembly based on many E. coli cells. We apply this method to assemble a genome from a single cell of an uncultivated SAR324 clade of Deltaproteobacteria, a cosmopolitan bacterial lineage in the global ocean. Metabolic reconstruction suggests that SAR324 is aerobic, motile and chemotaxic. Our approach enables acquisition of genome assemblies for individual uncultivated bacteria using only short reads, providing cell-specific genetic information absent from metagenomic studies.Whole genome amplification by the multiple displacement amplification (MDA) method allows sequencing of genomes from single cells of bacteria that cannot be cultured. However, genome assembly is challenging because of highly non-uniform read coverage generated by MDA. We describe an improved assembly approach tailored for single cell Illumina sequences that incorporates a progressively increasing coverage cutoff. This allows variable coverage datasets to be utilized effectively with assembly of E. coli and S. aureus single cell reads capturing >91% of genes within contigs, approaching the 95% captured from a multi-cell E. coli assembly. We apply this method to assemble a single cell genome of the uncultivated SAR324 clade of Deltaproteobacteria, a cosmopolitan bacterial lineage in the global ocean. Metabolic reconstruction suggests that SAR324 is aerobic, motile and chemotaxic. These new methods enable acquisition of genome assemblies for individual uncultivated bacteria, providing cell-specific genetic information absent from metagenomic studies.
PLOS ONE | 2009
Stefan Niemann; Claudio U. Köser; Sebastien Gagneux; Claudia Plinke; Helen Rachel Bignell; Richard J. Carter; R. Keira Cheetham; Anthony J. Cox; Niall Anthony Gormley; Paula Kokko-Gonzales; Lisa Murray; Roberto Rigatti; Vincent Peter Smith; Felix P. M. Arends; Helen S. Cox; Geoff Smith; John A. C. Archer
Background Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Methodology/Principal Findings Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Conclusions Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs.
Bioinformatics | 2012
Charles C. Berry; Nicolas Gillet; Anat Melamed; Niall Anthony Gormley; Charles R. M. Bangham; Frederic D. Bushman
MOTIVATION The relative abundance of retroviral insertions in a host genome is important in understanding the persistence and pathogenesis of both natural retroviral infections and retroviral gene therapy vectors. It could be estimated from a sample of cells if only the host genomic sites of retroviral insertions could be directly counted. When host genomic DNA is randomly broken via sonication and then amplified, amplicons of varying lengths are produced. The number of unique lengths of amplicons of an insertion site tends to increase according to its abundance, providing a basis for estimating relative abundance. However, as abundance increases amplicons of the same length arise by chance leading to a non-linear relation between the number of unique lengths and relative abundance. The difficulty in calibrating this relation is compounded by sample-specific variations in the relative frequencies of clones of each length. RESULTS A likelihood function is proposed for the discrete lengths observed in each of a collection of insertion sites and is maximized with a hybrid expectation-maximization algorithm. Patient data illustrate the method and simulations show that relative abundance can be estimated with little bias, but that variation in highly abundant sites can be large. In replicated patient samples, variation exceeds what the model implies-requiring adjustment as in Efron (2004) or using jackknife standard errors. Consequently, it is advantageous to collect replicate samples to strengthen inferences about relative abundance.
Journal of Antimicrobial Chemotherapy | 2014
Claudio U. Köser; Louise Fraser; Avgousta Ioannou; Jennifer Becq; Matthew J. Ellington; Matthew T. G. Holden; Sandra Reuter; M. Estée Török; Stephen D. Bentley; Julian Parkhill; Niall Anthony Gormley; Geoffrey Paul Smith; Sharon J. Peacock
Objectives As a result of the introduction of rapid benchtop sequencers, the time required to subculture a bacterial pathogen to extract sufficient DNA for library preparation can now exceed the time to sequence said DNA. We have eliminated this rate-limiting step by developing a protocol to generate DNA libraries for whole-genome sequencing directly from single bacterial colonies grown on primary culture plates. Methods We developed our protocol using single colonies of 17 bacterial pathogens responsible for severe human infection that were grown using standard diagnostic media and incubation conditions. We then applied this method to four clinical scenarios that currently require time-consuming reference laboratory tests: full identification and genotyping of salmonellae; identification of blaNDM-1, a highly transmissible carbapenemase resistance gene, in Klebsiella pneumoniae; detection of genes encoding staphylococcal toxins associated with specific disease syndromes; and monitoring of vaccine targets to detect vaccine escape in Neisseria meningitidis. Results We validated our single-colony whole-genome sequencing protocol for all 40 combinations of pathogen and selective, non-selective or indicator media tested in this study. Moreover, we demonstrated the clinical value of this method compared with current reference laboratory tests. Conclusions This advance will facilitate the implementation of whole-genome sequencing into diagnostic and public health microbiology.
PLOS Pathogens | 2014
Anat Melamed; Aviva Witkover; Daniel J. Laydon; Rachael Brown; Kristin Ladell; Kelly Louise Miners; Aileen G. Rowan; Niall Anthony Gormley; David A. Price; Graham P. Taylor; Edward L. Murphy; Charles R. M. Bangham
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.
Nature Biotechnology | 2017
Fan Zhang; Lena Christiansen; Jerushah Thomas; Dmitry K. Pokholok; Ros Jackson; Natalie Morrell; Yannan Zhao; Melissa Wiley; Emily Welch; Erich Jaeger; Ana Granat; Steven J Norberg; Aaron Halpern; Maria C Rogert; Mostafa Ronaghi; Jay Shendure; Niall Anthony Gormley; Kevin L. Gunderson; Frank J. Steemers
Haplotype-resolved genome sequencing promises to unlock a wealth of information in population and medical genetics. However, for the vast majority of genomes sequenced to date, haplotypes have not been determined because of cumbersome haplotyping workflows that require fractions of the genome to be sequenced in a large number of compartments. Here we demonstrate barcode partitioning of long DNA molecules in a single compartment using “on-bead” barcoded tagmentation. The key to the method that we call “contiguity preserving transposition” sequencing on beads (CPTv2-seq) is transposon-mediated transfer of homogenous populations of barcodes from beads to individual long DNA molecules that get fragmented at the same time (tagmentation). These are then processed to sequencing libraries wherein all sequencing reads originating from each long DNA molecule share a common barcode. Single-tube, bulk processing of long DNA molecules with ∼150,000 different barcoded bead types provides a barcode-linked read structure that reveals long-range molecular contiguity. This technology provides a simple, rapid, plate-scalable and automatable route to accurate, haplotype-resolved sequencing, and phasing of structural variants of the genome.