Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niamh Forde is active.

Publication


Featured researches published by Niamh Forde.


Reproduction, Fertility and Development | 2008

Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers

F. Carter; Niamh Forde; P. Duffy; M. Wade; Trudee Fair; M.A. Crowe; A.C.O. Evans; D. A. Kenny; J.F. Roche; P. Lonergan

Higher systemic progesterone in the immediate post-conception period is associated with an increase in embryonic growth rate, interferon-tau production and pregnancy rate in cattle. The objective of this study was to examine the effect of increasing progesterone concentration on Day 3 on subsequent embryo survival and development. Oestrus (Day 0) was synchronised in beef-cross heifers (n=210) and approximately two-thirds of the heifers were inseminated with semen from a proven sire, while the remainder were not inseminated. In order to produce animals with divergent progesterone concentrations, half of the animals received a progesterone-releasing intravaginal device (PRID) on Day 3 of the oestrous cycle, which was left in situ until slaughter. The four treatment groups were: (i) pregnant, high progesterone; (ii) pregnant, normal progesterone; (iii) non-pregnant, high progesterone; and (iv) non-pregnant, normal progesterone. Animals were blood-sampled twice daily from Days 0 to 8 and once daily thereafter until slaughter on Days 5, 7, 13 or 16, corresponding to the 16-cell stage, the blastocyst stage, the beginning of elongation and the day of maternal recognition of pregnancy, respectively. Embryos were recovered by flushing the tract with phosphate-buffered saline and characterised by stage of development and, in the case of Days 13 and 16, measured. Data were analysed by mixed models ANOVA, Chi-square analysis and Students t-test where appropriate. Insertion of a PRID on Day 3 increased (P<0.05) progesterone concentrations from Day 3.5 onwards. There was no difference between treatments in the proportion of embryos at the expected stage of development on Days 5 or 7 (P>0.05). While not significantly different, the proportion of viable embryos recovered was numerically greater in the high progesterone group on both Day 13 (58 v. 43%) and Day 16 (90 v. 50%). Elevation of progesterone significantly increased embryonic length on Day 13 (2.24+/-0.51 mm v. 1.15+/-0.16 mm, P=0.034) and Day 16 (14.06+/-1.18 cm v. 5.97+/-1.18 cm, P=0.012). In conclusion, insertion of a PRID on Day 3 of the oestrous cycle increased serum progesterone concentrations on subsequent days, which, while having no phenotypic effect on embryonic development on Days 5 or 7, was associated with an increase in embryonic size on Days 13 and 16.


Biology of Reproduction | 2009

Progesterone-Regulated Changes in Endometrial Gene Expression Contribute to Advanced Conceptus Development in Cattle

Niamh Forde; F. Carter; Trudee Fair; M.A. Crowe; A.C.O. Evans; Thomas E. Spencer; Fuller W. Bazer; R. McBride; M.P. Boland; Peadar O'Gaora; P. Lonergan; J.F. Roche

The postovulatory rise in circulating progesterone (P4) concentrations is associated with increased pregnancy success in beef and dairy cattle. Our study objective was to determine how elevated P4 alters endometrial gene expression to advance conceptus development. Synchronized heifers were inseminated (Day 0) and randomly assigned to pregnant high P4 or to pregnant normal P4. All high P4 groups received a P4-release intravaginal device on Day 3 after insemination that increased P4 concentrations up to Day 7 (P < 0.05). Tissue was collected on Day 5, 7, 13, or 16 of pregnancy, and endometrial gene expression was analyzed using the bovine Affymetrix (Santa Clara, CA) microarrays. Microarray analyses demonstrated that the largest number of P4-regulated genes coincided with the day when the P4 profiles were different for the longest period. Genes with the largest fold change increase (such as DGAT2 and MSTN [also known as GDF8]) were associated with triglyceride synthesis and glucose transport, which can be utilized as an energy source for the developing embryo. Temporal changes occurred at different stages of early pregnancy, with the greatest difference occurring between well-separated stages of conceptus development. Validation of a number of genes by quantitative real-time PCR indicated that P4 supplementation advances endometrial gene expression by altering the time (FABP, DGAT2, and MSTN) or duration (CRYGS) of expression pattern for genes that contribute to the composition of histotroph.


Biology of Reproduction | 2011

Changes in the Endometrial Transcriptome During the Bovine Estrous Cycle: Effect of Low Circulating Progesterone and Consequences for Conceptus Elongation

Niamh Forde; Marijke Eileen Beltman; Gillian Duffy; P. Duffy; Jai Prakash Mehta; Peadar O'Gaora; J.F. Roche; P. Lonergan; M.A. Crowe

In cattle, elevated concentrations of circulating progesterone (P4) in the immediate postconception period are associated with advanced conceptus development, while low P4 is implicated as a causative factor in low pregnancy rates observed in dairy cows. This study aimed to: 1) describe the transcriptional changes that occur in the bovine endometrium during the estrous cycle, 2) determine how elevated P4 affects these changes, 3) identify if low P4 alters the expression of these genes, and 4) assess the impact that low P4 has on conceptus development. Relatively few differences occurred in endometrial gene expression during the early luteal phase of the estrous cycle (Day 5 vs. 7), but comparison of endometria from more distant stages of the luteal phase (Day 7 vs. 13) revealed large transcriptional changes, which were significantly altered by exogenous supplementation of P4. Induction of low circulating P4 altered the normal temporal changes in gene expression, and these changes were coordinate with a delay in the down-regulation of the PGR from the LE and GE. Altered endometrial gene expression induced by low P4 was associated with a reduced capacity of the uterus to support conceptus development after embryo transfer on Day 7. In conclusion, the present study provides clear evidence that the temporal changes in the transcriptome of the endometrium of cyclic heifers are sensitive to circulating P4 concentrations in the first few days after estrus. Under low P4 conditions, a suboptimal uterine environment with reduced ability to support conceptus elongation is observed.


Biology of Reproduction | 2011

Conceptus-Induced Changes in the Endometrial Transcriptome: How Soon Does the Cow Know She Is Pregnant?

Niamh Forde; F. Carter; Thomas E. Spencer; Fuller W. Bazer; Olivier Sandra; Nadéra Mansouri-Attia; Lilian A. Okumu; Paul A. McGettigan; Jai Prakash Mehta; R. McBride; Peadar O'Gaora; J.F. Roche; P. Lonergan

This study sought to determine the earliest response of the bovine uterine endometrium to the presence of the conceptus at key developmental stages of early pregnancy. There were no detectable differences in gene expression in endometria from pregnant and cyclic heifers on Days 5, 7, and 13 postestrus, but the expression of 764 genes was altered due to the presence of the conceptus at maternal recognition of pregnancy (Day 16). Of these 514 genes, MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD9, EIF4E, and IFIT2 increased to the greatest extent in pregnant endometria (>8-fold log2 fold change increase). The expression of OXTR, Bt.643 (unofficial symbol), and KCNMA1 was reduced the most, but short-term treatment with recombinant ovine interferon tau (IFNT) in vitro or in vivo did not alter their expression. In vivo intrauterine infusion of IFNT induced the expression of EIF4E, IFIT2, IFI44, ISG20, MX2, RSAD2, SAMD9, and USP18. These results revealed for the first time that changes that occur in the endometrial transcriptome are independent of the presence of a conceptus until pregnancy recognition. The differentially expressed genes (including MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD, and EIF4E) are a consequence of IFNT production by the conceptus. The identified genes represent known and novel early markers of conceptus development and/or return to cyclicity and may be useful to identify the earliest stage at which the endometrial response to the conceptus is detectable.


Physiological Genomics | 2010

Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium

Niamh Forde; Thomas E. Spencer; Fuller W. Bazer; Gwonhwa Song; J.F. Roche; P. Lonergan

The objective of this study was to determine the temporal and spatial expression patterns of genes encoding transporters, as well as selected secreted proteins that may be regulated by progesterone (P4) and/or the presence of the conceptus in the bovine endometrium. Estrus-synchronized beef heifers were randomly assigned to either: 1) pregnant, high P4; 2) pregnant, normal P4; 3) cyclic, high P4; or 4) cyclic, normal P4. Uteri were collected on days 5, 7, 13, and 16 of the estrous cycle or pregnancy. Localization of mRNAs for ANPEP, CTGF, LPL, LTF, and SLC5A1 in the uteri was determined by radioactive in situ hybridization, and expression quantified in the endometria by quantitative real-time PCR. ANPEP localized to luminal (LE) and superficial glandular (sGE) epithelia of all heifers on days 5 and 7 only. SLC5A1 mRNA was detected in the LE and sGE on days 13 and 16 in all heifers, and expression increased on day 16 in pregnant groups. CTGF localized weakly to the LE and GE on days 5 and 7 but increased on days 13 and 16 with an increase (P < 0.05) in CTGF expression in high P4 (day 7) and pregnant heifers (day 16). Both LPL and LTF localized to the GE only on days 5 and 7. In conclusion we have characterized the temporal expression pattern of these genes and modulation of their transcript abundance by P4 (CTGF, LPL) and/or the conceptus (CTGF, SLC5A1) likely modifies the uterine microenvironment, enhancing histotroph composition and contributing to advanced conceptus elongation.


Reproduction | 2010

The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus

Lilian A. Okumu; Niamh Forde; A. G. Fahey; Eamonn Fitzpatrick; James F. Roche; M.A. Crowe; P. Lonergan

To investigate the effects of pregnancy or post-ovulatory progesterone (P(4)) supplementation on the expression of oestrogen and P(4) receptors (ESRs and PGRs) in the bovine uterus, heifers (n=263) were randomly assigned to the following treatments: i) cyclic, normal P(4); ii) cyclic, high P(4); iii) pregnant, normal P(4); and iv) pregnant, high P(4) on days 5, 7, 13 and 16 of pregnancy/oestrous cycle. Elevated P(4) was achieved through P(4)-releasing intravaginal device insertion on day 3 after oestrus, resulting in increased concentrations from day 3.5 to 8 (P<0.05) in the high groups than in the normal groups. Irrespective of treatment, PGR and ESR1 mRNA expressions were highest on days 5 and 7 and decreased on day 13 (P<0.05), while ESR2 mRNA expression increased on day 7 (P<0.05) and similar levels were maintained within the normal P(4) groups subsequently. Expression in the high P(4) groups decreased on day 13 (P<0.05). PGR-AB and PGR-B protein expressions were high in the luminal and superficial glands on days 5 and 7, but by day 13, expression had declined to very low or undetectable levels and high P(4) concentration tended to decrease or decreased significantly (P<0.05) the expression in these regions on days 5 and 7. ESR1 protein expression was high, with no treatment effect. ESR2 protein was also highly expressed, with no clear effect of treatment. In conclusion, early post-ovulatory P(4) supplementation advances the disappearance of PGR protein from the luminal epithelium on days 5 and 7, and decreases ESR2 mRNA expression during the mid-luteal phase, but has no effect on PGR or ESR1 mRNA expression.


Physiological Genomics | 2012

Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau

Niamh Forde; Gillian Duffy; Paul A. McGettigan; John A. Browne; Jai Prakash Mehta; A. K. Kelly; Nadéra Mansouri-Attia; Olivier Sandra; Brendan J. Loftus; M.A. Crowe; Trudee Fair; James F. Roche; P. Lonergan; A.C.O. Evans

The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h (P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased (SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 (P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase (P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.


Reproduction | 2013

Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants

Thomas E. Spencer; Niamh Forde; Piotr Dorniak; Thomas R. Hansen; Jared J. Romero; P. Lonergan

In cattle, the blastocyst hatches from the zona pellucida on days 8-9 and then forms a conceptus that grows and elongates into an ovoid and then filamentous shape between days 9 and 16. The growing conceptus synthesizes and secretes prostaglandins (PGs) and interferon τ (IFNT). Our hypothesis was that the ovoid conceptus exerts a local effect on the endometrium prior to maternal recognition of pregnancy on day 16 in cattle. In study one, synchronized cyclic heifers received no blastocysts or 20 in vitro-produced blastocysts on day 7 and their uteri were collected on day 13. IFNT was not detected by RIA in the uterine flushing samples of pregnant heifers containing multiple ovoid conceptuses; however, total PG levels were higher in the uterine lumen of pregnant heifers than in that of cyclic heifers. Microarray analysis revealed that the expression of 44 genes was increased in the endometria of day 13 pregnant heifers when compared with that in the endometria of cyclic heifers, and many of these genes were classical Type I IFN-stimulated genes (ISGs). In studies two and three, the effects of infusing PGs at the levels produced by the elongating day 14 conceptus into the uterine lumen of cyclic ewes on ISG expression in the endometrium were determined. Results indicated that the infusion of PGs increased the abundance of several ISGs in the endometrium. These studies support the hypothesis that the day 13 conceptus secretes PGs that act locally in a paracrine manner to alter gene expression in the endometrium prior to pregnancy recognition in cattle.


Biology of Reproduction | 2012

Effects of Low Progesterone on the Endometrial Transcriptome in Cattle

Niamh Forde; Jai Prakash Mehta; Megan Minten; M.A. Crowe; James F. Roche; Thomas E. Spencer; P. Lonergan

ABSTRACT The objective of the present study was to determine how low progesterone (P4) affects the endometrial transcriptome, with specific emphasis on those changes that may impact conceptus elongation. Following estrous synchronization and detection (estrus = Day 0, n = 40), heifers were randomly assigned to a control group (n = 12) or a low P4 group (n = 28). Heifers in the low P4 group had consistently lower P4 concentrations compared to controls (P < 0.05). Microarray analysis of endometrial gene expression revealed low P4 altered the expression of 498 differentially expressed genes (DEGs; 215 up- and 283 down-regulated) on Day 7 and 351 DEGs (272 up- and 79 down-regulated) on Day 13. A similar number of temporal changes occurred between Day 7 and Day 13 in both groups (2212 in heifers with normal P4 compared with 2247 in heifers with low P4); of these DEGs, 1278 were common to both groups. Little overlap in the number of DEGs affected by high or low P4 was observed across days. Comparison of the temporal changes that occur during normal estrous cycle progression (i.e., from Day 7 to Day 13) to those affected by altered P4 found significant numbers of genes were modulated by elevated (4157) and decreased (809) P4 alone. Analysis of selected genes by quantitative real-time PCR and in situ hybridization revealed that expression of MEP1B, NID2, and PRSS23 increased on Day 13 compared to Day 7 (P < 0.05) and that the magnitude of increase was significantly diminished in heifers with low P4 compared to controls. MEP1B predominantly localized to the both the superficial and deep glandular epithelium (GE), NID2 localized to the deep GE, whereas PRSS23 localized only to the luminal epithelium. In conclusion, we have determined the global changes in the endometrial transcriptome induced by decreasing the output of P4 from the corpus luteum in vivo using a unique animal model. Placing these data into context with previous data in which P4 was supplemented or elevated after ovulation, we have identified a panel of genes that are truly regulated in the endometrium by circulating concentrations of P4 in vivo and that likely impact conceptus elongation.


Biology of Reproduction | 2011

Transcriptome Changes at the Initiation of Elongation in the Bovine Conceptus

M. Clemente; I. Lopez-Vidriero; Peadar O'Gaora; Jai Prakash Mehta; Niamh Forde; Alfonso Gutierrez-Adan; P. Lonergan; D. Rizos

The majority of embryonic loss in cattle occurs before maternal recognition of pregnancy, at around Day 16 postconception. The origin of the embryo can have a significant impact on the dynamics of embryo mortality. The aim of this study was to examine the temporal changes in transcriptional profile as the embryo develops from a spherical blastocyst on Day 7 to an ovoid conceptus at the initiation of elongation on Day 13 and to highlight differences in these temporal gene expression dynamics between in vivo- and in vitro-derived blastocysts that may be associated with embryonic survival/mortality using the bovine Affymetrix microarray. All embryos were produced either in vitro by in vitro fertilization or in vivo by superovulation. A proportion of Day 7 blastocysts were snap frozen, and the remainder were transferred (n = 10 per recipient) to synchronized heifers, recovered on Day 13, and snap frozen individually. Three pools of Day 7 blastocysts (n = 25 per pool) and Day 13 conceptuses (n = 5 per pool) were used for microarray analysis. In Day 7 blastocysts, 50 genes were found to be differentially expressed (P < 0.05), of which 19 were up-regulated and 31 down-regulated in the in vivo compared to in vitro embryos. In Day 13 conceptuses, 288 genes were found to be differentially expressed (P < 0.05), of which 133 were up-regulated and 155 down-regulated in the in vivo compared to in vitro embryos. The comparison between Day 7 and Day 13 embryos revealed significant temporal changes in transcript profile with 1806 and 909 transcripts differentially expressed in the in vitro- and in vivo-derived embryos, respectively. Across the three array comparisons between Day 7 and Day 13 embryos, 444 genes were consistently exclusively present in the in vivo embryos, whereas 1341 were exclusively present in the in vitro embryos. Regardless of the origin of the embryo, 465 differentially expressed genes between Day 7 and 13 were common to both in vivo- and in vitro-derived embryos; these genes are likely critical for the transition between the blastocyst (Day 7) and ovoid conceptus (Day 13) stages of embryo development. In order to validate the microarray findings, differences in the expression of six genes (CYP51A1, FADS1, TDGF1, HABP2, APOA2, and SLC12A2) were confirmed by quantitative real-time PCR on in vivo- and in vitro-derived embryos on Day 7 and Day 13 using independent samples from those used for the microarray. Subsequent mapping of these differentially expressed genes into relevant functional groups and pathways identified important pathways involved in conceptus elongation in cattle. In conclusion, this analysis has identified genes and pathways crucial for the transition from a spherical blastocyst to an ovoid conceptus as well as those uniquely associated with a greater likelihood of embryonic survival (those unique to in vivo embryos) or loss (those unique to in vitro embryos).

Collaboration


Dive into the Niamh Forde's collaboration.

Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

M.A. Crowe

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

A.C.O. Evans

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Roche

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

A. K. Kelly

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

F. Carter

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Trudee Fair

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

D. Rizos

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge