Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicanor I. Moldovan is active.

Publication


Featured researches published by Nicanor I. Moldovan.


Journal of Clinical Investigation | 2000

Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia

Robert T. Eberhardt; Marc A. Forgione; Andre Cap; Jane A. Leopold; M. Audrey Rudd; María R. Trolliet; Stanley Heydrick; Rachel Stark; Elizabeth S. Klings; Nicanor I. Moldovan; Mohammed Yaghoubi; Pascal J. Goldschmidt-Clermont; Harrison W. Farber; Richard A. Cohen; Joseph Loscalzo

Homocysteine is a risk factor for the development of atherosclerosis and its thrombotic complications. We have employed an animal model to explore the hypothesis that an increase in reactive oxygen species and a subsequent loss of nitric oxide bioactivity contribute to endothelial dysfunction in mild hyperhomocysteinemia. We examined endothelial function and in vivo oxidant burden in mice heterozygous for a deletion in the cystathionine beta-synthase (CBS) gene, by studying isolated, precontracted aortic rings and mesenteric arterioles in situ. CBS(-/+) mice demonstrated impaired acetylcholine-induced aortic relaxation and a paradoxical vasoconstriction of mesenteric microvessels in response to superfusion of methacholine and bradykinin. Cyclic GMP accumulation following acetylcholine treatment was also impaired in isolated aortic segments from CBS(-/+) mice, but aortic relaxation and mesenteric arteriolar dilation in response to sodium nitroprusside were similar to wild-type. Plasma levels of 8-epi-PGF(2alpha) (8-IP) were somewhat increased in CBS(-/+) mice, but liver levels of 8-IP and phospholipid hydroperoxides, another marker of oxidative stress, were normal. Aortic tissue from CBS(-/+) mice also demonstrated greater superoxide production and greater immunostaining for 3-nitrotyrosine, particularly on the endothelial surface. Importantly, endothelial dysfunction appears early in CBS(-/+) mice in the absence of structural arterial abnormalities. Hence, mild hyperhomocysteinemia due to reduced CBS expression impairs endothelium-dependent vasodilation, likely due to impaired nitric oxide bioactivity, and increased oxidative stress apparently contributes to inactivating nitric oxide in chronic, mild hyperhomocysteinemia.


Circulation Research | 2000

Contribution of Monocytes/Macrophages to Compensatory Neovascularization: The Drilling of Metalloelastase-Positive Tunnels in Ischemic Myocardium

Nicanor I. Moldovan; Pascal J. Goldschmidt-Clermont; Jan Parker-Thornburg; Steven D. Shapiro; P.E. Kolattukudy

In a transgenic model of ischemic cardiomyopathy in which monocytes are attracted to the myocardium by the targeted overexpression of monocyte chemoattractant protein-1 (MCP-1), we have observed the presence of endothelial NO synthase and platelet endothelial cell adhesion molecule-1–negative tunnels, occasionally containing blood-derived cells, that probe the cardiac tissue. Immunohistochemical data show that monocytes/macrophages (MCs/Mphs) drill tunnels using the broad-spectrum mouse macrophage metalloelastase. 5-Bromo-2′-deoxyuridine incorporation and neo-endothelial markers present in the microvasculature of MCP-1 mouse hearts suggest an active angiogenic process. Further studies will be required to establish that the MC-/Mph-drilled tunnels evolve to become capillaries, connected to the existing vessels and colonized by circulating endothelial cell progenitors. This possibility is supported by the availability of these cells, which is demonstrated by cell tagging with &bgr;-galactosidase placed under an active endothelial Tie-2 promoter. This phenomenon might represent another mechanism, in addition to the secretion of the angiogenic factors, by which MCs/MPhs may participate in the elaboration of new blood vessels in adult tissues.


Circulation Research | 2000

Redox Changes of Cultured Endothelial Cells and Actin Dynamics

Leni Moldovan; Nicanor I. Moldovan; Richard H. Sohn; Sahil A. Parikh; Pascal J. Goldschmidt-Clermont

We studied the association between the production of reactive oxygen species, actin organization, and cellular motility. We have used an endothelial cell monolayer-wounding assay to demonstrate that the cells at the margin of the wound thus created produced significantly more free radicals than did cells in distant rows. The rate of incorporation of actin monomers into filaments was fastest at the wound margin, where heightened production of free radicals was detected. We have tested the effect of decreasing reactive oxygen species production on the migration of endothelial cells and on actin polymerization. The NADPH inhibitor diphenylene iodonium and the superoxide dismutase mimetic manganese (III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) virtually abolished cytochalasin D-inhibitable actin monomer incorporation at the fast-growing barbed ends of filaments. Moreover, endothelial cell migration within the wound was significantly retarded in the presence of both diphenylene iodonium and MnTMPyP. We conclude that migration of endothelial cells in response to loss of confluence includes the intracellular production of reactive oxygen species, which contribute to the actin cytoskeleton reorganization required for the migratory behavior of endothelial cells.


Histochemistry and Cell Biology | 2004

Oxygen free radicals and redox biology of organelles

Leni Moldovan; Nicanor I. Moldovan

The presence and supposed roles of reactive oxygen species (ROS) were reported in literature in a myriad of instances. However, the breadth and depth of their involvement in cellular physiology and pathology, as well as their relationship to the redox environment can only be guessed from specialized reports. Whatever their circumstances of formation or consequences, ROS seem to be conspicuous components of intracellular milieu. We sought to verify this assertion, by collecting the available evidence derived from the most recent publications in the biomedical field. Unlike other reviews with similar objectives, we centered our analysis on the subcellular compartments, namely on organelles, grouped according to their major functions. Thus, plasma membrane is a major source of ROS through NAD(P)H oxidases located on either side. Enzymes of the same class displaying low activity, as well as their components, are also present free in cytoplasm, regulating the actin cytoskeleton and cell motility. Mitochondria can be a major source of ROS, mainly in processes leading to apoptosis. The protein synthetic pathway (endoplasmic reticulum and Golgi apparatus), including the nucleus, as well as protein turnover, are all exquisitely sensitive to ROS-related redox conditions. The same applies to the degradation pathways represented by lysosomes and peroxisomes. Therefore, ROS cannot be perceived anymore as a mere harmful consequence of external factors, or byproducts of altered cellular metabolism. This may explain why the indiscriminate use of anti-oxidants did not produce the expected “beneficial” results in many medical applications attempted so far, underlying the need for a deeper apprehension of the biological roles of ROS, particularly in the context of the higher cellular order of organelles.


Trends in Cardiovascular Medicine | 2003

Role of Blood Mononuclear Cells in Recanalization and Vascularization of Thrombi: Past, Present, and Future

Nicanor I. Moldovan; Takayuki Asahara

Recent experimental data suggest a role for blood-borne mononuclear cells, including bone marrow-derived endothelial progenitor cells (EPCs) in organization, vascularization, and recanalization of thrombi. Older studies have described in detail the in situ structural modifications accompanying these processes. The common themes are (a) involvement of pluripotent mononuclear cells, and (b) proteolytic and/or phagocytic activity of monocytes/macrophages (MCs/Mphs) in modifying the thrombus to a proangiogenic state. In addition to a nurturing function, MCs/Mphs may assist the engraftment of thrombus-trapped or incoming EPCs. The differences between the recanalization potency of venous and arterial thrombi suggest that in addition to the organization of the fibrin meshwork, the cellular composition of the venous thrombi may be responsible for the better recanalization seen in venous clots. These observations set the stage for therapeutic manipulation of organization and recanalization of thrombi, by increasing the MC/Mph and/or EPC content.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice.

Kaushik Vedam; Yoshinori Nishijima; Lawrence J. Druhan; Mahmood Khan; Nicanor I. Moldovan; Jay L. Zweier; Govindasamy Ilangovan

Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp25 in chemotherapeutic-induced heart failure has not been investigated. Using HSF-1 wild-type (HSF-1(+/+)) and knock-out (HSF-1(-/-)) mice, we tested the hypothesis that activation of HSF-1 plays a role in the development of Dox-induced heart failure. Higher levels of Hsp25 and its phosphorylated forms were found in the failing hearts of Dox-treated HSF-1(+/+) mice. More than twofold increase in Hsp25 mRNA level was found in Dox-treated hearts. Proteomic analysis showed that there is accumulation and aggregation of Hsp25 in Dox-treated failing hearts. Additionally, Hsp25 was found to coimmunoprecipitate with p53 and vice versa. Further studies indicated that the Dox-induced higher levels of Hsp25 transactivated p53 leading to higher levels of the pro-apoptotic protein Bax, but other p53-related proteins remained unaltered. Moreover, HSF-1(-/-) mice showed significantly reduced Dox-induced heart failure and higher survival rate, and there was no change in Bax upon treating with Dox in HSF-1(-/-) mice. From these results we propose a novel mechanism for Dox-induced heart failure: increased expression of Hsp25 because of oxidant-induced activation of HSF-1 transactivates p53 to increase Bax levels, which leads to heart failure.


Cytoskeleton | 2000

Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells

James H.-C. Wang; Pascal J. Goldschmidt-Clermont; Nicanor I. Moldovan; F. C. P. Yin

We studied actin cytoskeletal remodeling and the role of leukotrienes and tyrosine phosphorylation in the response of endothelial cells to different types of cyclic mechanical stretching. Human aortic endothelial cells were grown on deformable silicone membranes subjected to either cyclic one-directional (strip) stretching (10%, 0.5 Hz), or biaxial stretching. After 1 min of either type of stretching, actin cytoskeletons of the stretched cells were already disrupted. After stretching for 10 and 30 min, the percentage of the stretched cells that had disrupted actin cytoskeletons were significantly increased, compared with control cells without stretching. Also, at these two time points, biaxial stretching consistently produced higher frequencies of actin cytoskeleton disruption. At 3 h, strip stretching caused the formation of stress fiber bundles, which were oriented nearly perpendicular to the stretching direction. With biaxial stretching, however, actin cytoskeletons in many stretched cells were remodeled into three-dimensional actin structures protruding outside the substrate plane, within which cyclic stretching was applied. In both stretching conditions, actin filaments were formed in the direction without substrate deformation. Moreover, substantially inhibiting either leukotriene production with nordihydroguaiaretic acid or tyrosine phosphorylation with tyrphostin A25 did not block the actin cytoskeletal remodeling. However, inhibiting both leukotriene production and tyrosine phosphorylation completely blocked the actin cytoskeletal remodeling. Thus, the study showed that the remodeling of actin cytoskeletons of the stretched endothelial cells include rapid disruption first and then re-formation. The resulting pattern of the actin cytoskeleton after remodeling depends on the type of cyclic stretching applied, but under either type of cyclic stretching, the actin filaments are formed in the direction without substrate deformation. Finally, leukotrienes and tyrosine phosphorylation are necessary for actin cytoskeletal remodeling of the endothelial cells in response to mechanical stretching.


Journal of Cellular and Molecular Medicine | 2005

Preferential activity of Tie2 promoter in arteriolar endothelium

Mirela Anghelina; Leni Moldovan; Nicanor I. Moldovan

The tyrosine kinase Tie2/Tek (the receptor for angiopoietins) is considered one of the most reliable markers of the endothelial phenotype, across organisms, organs, and developmental stages. However, endothelium is intrinsically heterogeneous in origin, composition and function, presenting an arteriolar/venular asymmetry. In this regard, the expression of Tie2 along the vascular tree, although thought to be homogenous, has not been systematically investigated. Therefore we questioned whether the activity of Tie2 promoter is uniform in the microvascular endothelium. To this end, we analyzed in situ the expression of the markers β‐galactosidase [LacZ(Tie2)] and green fluorescent protein (GFP) [GFP(Tie2)], placed under the Tie2 promoter in transgenic mice, in whole mount tissue samples, which allow the simultaneous evaluation of its relative distribution in various microvascular compartments. In the mesenteries of LacZ(Tie2) and GFP(Tie2) mice, we found that the activity of Tie2 promoter is asymmetrically distributed, being much stronger in arteries and arterioles than on the venular side of the vascular tree. This observation was replicated in the diaphragm of LacZ(Tie2) mice. The capillaries presented a mosaic pattern of Tie2 promoter activity. Stimulation of angiogenesis either by wounding, or by intraperitoneal injection of Vascular Endothelial Growth Factor (VEGF), revealed that the arteriolar/venular asymmetry is established at endothelial cellular level early during new capillary formation, even before the starting of the microvasular blood flow. In conclusion, a strong Tie2 promoter activity qualifies as a novel marker of the arteriolar phenotype in microvascular endothelium.


Molecular Therapy | 2009

Regulation of Adult Hematopoietic Stem Cells Fate for Enhanced Tissue-specific Repair

Nilanjana Sengupta; Sergio Caballero; Sean M. Sullivan; Lung-Ji Chang; Aqeela Afzal; Sergio Li Calzi; Jennifer L. Kielczewski; Sabrina Prabarakan; E. Ann Ellis; Leni Moldovan; Nicanor I. Moldovan; Michael E. Boulton; Maria B. Grant

The ability to control the differentiation of adult hematopoietic stem cells (HSCs) would promote development of new cell-based therapies to treat multiple degenerative diseases. Systemic injection of NaIO(3) was used to ablate the retinal pigment epithelial (RPE) layer in C57Bl6 mice and initiate neural retinal degeneration. HSCs infected ex vivo with lentiviral vector expressing the RPE-specific gene RPE65 restored a functional RPE layer, with typical RPE phenotype including coexpression of another RPE-specific marker, CRALBP, and photoreceptor outer segment phagocytosis. Retinal degeneration was prevented and visual function, as measured by electroretinography (ERG), was restored to levels similar to that found in normal animals. None of the controls (no HSCs, HSCs alone and HSCs infected with lentiviral vector expressing LacZ) showed these effects. In vitro gene array studies demonstrated that infection of HSC with RPE65 increased adenylate cyclase mRNA. In vitro exposure of HSCs to a pharmacological agonist of adenylate cyclase also led to in vitro differentiation of HSCs to RPE-like cells expressing pigment granules and the RPE-specific marker, CRALBP. Our data confirm that expression of the cell-specific gene RPE65 promoted fate determination of HSCs toward RPE for targeted tissue repair, and did so in part by activation of adenylate cyclase signaling pathways. Expression by HSCs of single genes unique to a differentiated cell may represent a novel experimental paradigm to influence HSC plasticity, force selective differentiation, and ultimately lead to identification of pharmacological alternatives to viral gene delivery.The ability to control the differentiation of adult hematopoietic stem cells (HSCs) would promote development of new cell-based therapies to treat multiple degenerative diseases. Systemic injection of NaIO3 was used to ablate the retinal pigment epithelial (RPE) layer in C57Bl6 mice and initiate neural retinal degeneration. HSCs infected ex vivo with lentiviral vector expressing the RPE-specific gene RPE65 restored a functional RPE layer, with typical RPE phenotype including coexpression of another RPE-specific marker, CRALBP, and photoreceptor outer segment phagocytosis. Retinal degeneration was prevented and visual function, as measured by electroretinography (ERG), was restored to levels similar to that found in normal animals. None of the controls (no HSCs, HSCs alone and HSCs infected with lentiviral vector expressing LacZ) showed these effects. In vitro gene array studies demonstrated that infection of HSC with RPE65 increased adenylate cyclase mRNA. In vitro exposure of HSCs to a pharmacological agonist of adenylate cyclase also led to in vitro differentiation of HSCs to RPE-like cells expressing pigment granules and the RPE-specific marker, CRALBP. Our data confirm that expression of the cell-specific gene RPE65 promoted fate determination of HSCs toward RPE for targeted tissue repair, and did so in part by activation of adenylate cyclase signaling pathways. Expression by HSCs of single genes unique to a differentiated cell may represent a novel experimental paradigm to influence HSC plasticity, force selective differentiation, and ultimately lead to identification of pharmacological alternatives to viral gene delivery.


OncoImmunology | 2012

Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo

Kevin Chu Foy; Megan J. Miller; Nicanor I. Moldovan; William E. Carson; Pravin T. P. Kaumaya

Overexpression of HER-2 and VEGF plays a key role in the development and metastasis of several human cancers. Many FDA-approved therapies targeting both HER-2 (Trastuzumab, Herceptin) and VEGF (Bevacizumab, Avastin) are expensive, have unacceptable toxicities and are often associated with the development of resistance. Here, we evaluate the dual antitumor effects of combining designed particular HER-2 peptide vaccine with VEGF peptide mimics. In vitro, HER-2 phosphorylation and antibody-dependent cellular toxicity were used to validate whether combining HER-2- and VEGF-targeting therapies would be effective. Moreover, a two-pronged approach was tested in vivo: (1) active immunotherapy with conformational HER-2 B-cell epitope vaccines and (2) anti-angiogenic therapy with a peptide structured to mimic VEGF. A transplantable BALB/c mouse model challenged with TUBO cells was used to test the effects of the HER-2 peptide vaccine combined with VEGF peptide mimics. Tumor sections after treatment were stained for blood vessel density and actively dividing cells. Our results show that immunization with an HER-2 peptide epitope elicits high affinity HER-2 native antibodies that are effective in inhibiting tumor growth in vivo, an effect that is enhanced by VEGF peptide mimics. We demonstrate that the combination of HER-2 and VEGF peptides induces potent anti-tumor and anti-angiogenic responses.

Collaboration


Dive into the Nicanor I. Moldovan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Omar Butt

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge