Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas A. Williamson is active.

Publication


Featured researches published by Nicholas A. Williamson.


Nature | 2012

MR1 presents microbial vitamin B metabolites to MAIT cells

Lars Kjer-Nielsen; Onisha Patel; Alexandra J. Corbett; Jérôme Le Nours; Bronwyn Meehan; Ligong Liu; Mugdha Bhati; Zhenjun Chen; Lyudmila Kostenko; Rangsima Reantragoon; Nicholas A. Williamson; Anthony W. Purcell; Nadine L. Dudek; Malcolm J. McConville; Richard A. J. O’Hair; George N. Khairallah; Dale I. Godfrey; David P. Fairlie; Jamie Rossjohn; James McCluskey

Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection.


Nature | 2012

Immune self-reactivity triggered by drug-modified HLA-peptide repertoire

Patricia T. Illing; Julian P. Vivian; Nadine L. Dudek; Lyudmila Kostenko; Zhenjun Chen; Mandvi Bharadwaj; John J. Miles; Lars Kjer-Nielsen; Stephanie Gras; Nicholas A. Williamson; Scott R. Burrows; Anthony W. Purcell; Jamie Rossjohn; James McCluskey

Human leukocyte antigens (HLAs) are highly polymorphic proteins that initiate immunity by presenting pathogen-derived peptides to T cells. HLA polymorphisms mostly map to the antigen-binding cleft, thereby diversifying the repertoire of self-derived and pathogen-derived peptide antigens selected by different HLA allotypes. A growing number of immunologically based drug reactions, including abacavir hypersensitivity syndrome (AHS) and carbamazepine-induced Stevens–Johnson syndrome (SJS), are associated with specific HLA alleles. However, little is known about the underlying mechanisms of these associations, including AHS, a prototypical HLA-associated drug reaction occurring exclusively in individuals with the common histocompatibility allele HLA-B*57:01, and with a relative risk of more than 1,000 (refs 6, 7). We show that unmodified abacavir binds non-covalently to HLA-B*57:01, lying across the bottom of the antigen-binding cleft and reaching into the F-pocket, where a carboxy-terminal tryptophan typically anchors peptides bound to HLA-B*57:01. Abacavir binds with exquisite specificity to HLA-B*57:01, changing the shape and chemistry of the antigen-binding cleft, thereby altering the repertoire of endogenous peptides that can bind HLA-B*57:01. In this way, abacavir guides the selection of new endogenous peptides, inducing a marked alteration in ‘immunological self’. The resultant peptide-centric ‘altered self’ activates abacavir-specific T-cells, thereby driving polyclonal CD8 T-cell activation and a systemic reaction manifesting as AHS. We also show that carbamazepine, a widely used anti-epileptic drug associated with hypersensitivity reactions in HLA-B*15:02 individuals, binds to this allotype, producing alterations in the repertoire of presented self peptides. Our findings simultaneously highlight the importance of HLA polymorphism in the evolution of pharmacogenomics and provide a general mechanism for some of the growing number of HLA-linked hypersensitivities that involve small-molecule drugs.


Immunity | 2008

Human Leukocyte Antigen Class I-Restricted Activation of CD8+ T Cells Provides the Immunogenetic Basis of a Systemic Drug Hypersensitivity

Diana Chessman; Lyudmila Kostenko; Tessa Lethborg; Anthony W. Purcell; Nicholas A. Williamson; Zhenjun Chen; Lars Kjer-Nielsen; Nicole A. Mifsud; Brian D. Tait; Rhonda Holdsworth; Coral Ann Almeida; D. Nolan; Whitney A. Macdonald; Julia K. Archbold; Anthony D. Kellerher; Debbie Marriott; S. Mallal; Mandvi Bharadwaj; Jamie Rossjohn; James McCluskey

The basis for strong immunogenetic associations between particular human leukocyte antigen (HLA) class I allotypes and inflammatory conditions like Behçets disease (HLA-B51) and ankylosing spondylitis (HLA-B27) remain mysterious. Recently, however, even stronger HLA associations are reported in drug hypersensitivities to the reverse-transcriptase inhibitor abacavir (HLA-B57), the gout prophylactic allopurinol (HLA-B58), and the antiepileptic carbamazepine (HLA-B*1502), providing a defined disease trigger and suggesting a general mechanism for these associations. We show that systemic reactions to abacavir were driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells. Recognition of abacavir required the transporter associated with antigen presentation and tapasin, was fixation sensitive, and was uniquely restricted by HLA-B*5701 and not closely related HLA allotypes with polymorphisms in the antigen-binding cleft. Hence, the strong association of HLA-B*5701 with abacavir hypersensitivity reflects specificity through creation of a unique ligand as well as HLA-restricted antigen presentation, suggesting a basis for the strong HLA class I-association with certain inflammatory disorders.


Nature | 2014

T-cell activation by transitory neo-antigens derived from distinct microbial pathways

Alexandra J. Corbett; Sidonia B. G. Eckle; Richard W. Birkinshaw; Ligong Liu; Onisha Patel; Jennifer Mahony; Zhenjun Chen; Rangsima Reantragoon; Bronwyn Meehan; Hanwei Cao; Nicholas A. Williamson; Richard A. Strugnell; Douwe van Sinderen; Jeffrey Y. W. Mak; David P. Fairlie; Lars Kjer-Nielsen; Jamie Rossjohn; James McCluskey

T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-d-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance.


Proteomics | 2015

FunRich: An open access standalone functional enrichment and interaction network analysis tool

Mohashin Pathan; Shivakumar Keerthikumar; Ching-Seng Ang; Lahiru Gangoda; Camelia Quek; Nicholas A. Williamson; Dmitri Mouradov; Oliver M. Sieber; Richard J. Simpson; Agus Salim; Antony Bacic; Andrew F. Hill; David A. Stroud; Michael T. Ryan; Johnson I. Agbinya; John M. Mariadason; Antony W. Burgess; Suresh Mathivanan

As high‐throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user‐friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user‐friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).


The FASEB Journal | 2005

Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway

Roberto Cappai; Su-Ling Leck; Deborah J. Tew; Nicholas A. Williamson; David P. Smith; Denise Galatis; Robyn A. Sharples; Cyril C. Curtain; Feda E. Ali; Robert A. Cherny; Janetta G. Culvenor; Stephen P. Bottomley; Colin L. Masters; Kevin J. Barnham; Andrew F. Hill

Dopamine (DA) and α‐synuclein (α‐SN) are two key molecules associated with Parkinsons disease (PD). We have identified a novel action of DA in the initial phase of α‐SN aggregation and demonstrate that DA induces α‐SN to form soluble, SDS‐resistant oligomers. The DA:α‐SN oligomeric species are not amyloidogenic as they do not react with thioflavin T and lack the typical amyloid fibril structures as visualized with electron microscopy. Circular dichroism studies indicate that in the presence of lipid membranes DA interacts with α‐SN, causing an alteration to the structure of the protein. Furthermore, DA inhibited the formation of iron‐induced α‐SN amyloidogenic aggregates, suggesting that DA acts as a dominant modulator of α‐SN aggregation. These observations support the paradigm emerging for other neurodegenerative diseases that the toxic species is represented by a soluble oligomer and not the insoluble fibril.


Journal of Biological Chemistry | 2003

Neurotoxic, Redox-competent Alzheimer's β-Amyloid Is Released from Lipid Membrane by Methionine Oxidation

Kevin J. Barnham; Giuseppe D. Ciccotosto; Anna K. Tickler; Feda E. Ali; Danielle G. Smith; Nicholas A. Williamson; Yuen-Han Lam; Darryl Carrington; Deborah J. Tew; Gulcan Kocak; Irene Volitakis; Frances Separovic; Colin J. Barrow; John D. Wade; Colin L. Masters; Robert A. Cherny; Cyril C. Curtain; Ashley I. Bush; Roberto Cappai

The amyloid β peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimers disease. The mechanism of this toxicity is contentious. Here we report that an Aβ peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Aβ) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Aβ. However, unlike the unoxidized peptide, Met(O)Aβ is unable to penetrate lipid membranes to form ion channel-like structures, and β-sheet formation is inhibited, phenomena that are central to some theories for Aβ toxicity. Our results show that, like the unoxidized peptide, Met(O)Aβ will coordinate Cu2+ and reduce the oxidation state of the metal and still produce H2O2. We hypothesize that Met(O)Aβ production contributes to the elevation of soluble Aβ seen in the brain in Alzheimers disease.


Journal of Experimental Medicine | 2005

The insulin A-chain epitope recognized by human T cells is posttranslationally modified

Stuart I. Mannering; Leonard C. Harrison; Nicholas A. Williamson; Jessica S. Morris; Daniel J. Thearle; Kent P. Jensen; Thomas W. H. Kay; Jamie Rossjohn; Ben A. Falk; Gerald T. Nepom; Anthony W. Purcell

The autoimmune process that destroys the insulin-producing pancreatic β cells in type 1 diabetes (T1D) is targeted at insulin and its precursor, proinsulin. T cells that recognize the proximal A-chain of human insulin were identified recently in the pancreatic lymph nodes of subjects who had T1D. To investigate the specificity of proinsulin-specific T cells in T1D, we isolated human CD4+ T cell clones to proinsulin from the blood of a donor who had T1D. The clones recognized a naturally processed, HLA DR4–restricted epitope within the first 13 amino acids of the A-chain (A1–13) of human insulin. T cell recognition was dependent on the formation of a vicinal disulfide bond between adjacent cysteine residues at A6 and A7, which did not alter binding of the peptide to HLA DR4. CD4+ T cell clones that recognized this epitope were isolated from an HLA DR4+ child with autoantibodies to insulin, and therefore, at risk for T1D, but not from two healthy HLA DR4+ donors. We define for the first time a novel posttranslational modification that is required for T cell recognition of the insulin A-chain in T1D.


Nature | 2013

A type III effector antagonizes death receptor signalling during bacterial gut infection

Jaclyn S. Pearson; Sze Ong; Catherine L. Kennedy; Michelle Kelly; Keith S. Robinson; Tania Lung; Ashley Mansell; Patrice Riedmaier; Claire Oates; Ali Zaid; Sabrina Mühlen; Valerie F. Crepin; Oliver Marchès; Ching-Seng Ang; Nicholas A. Williamson; Lorraine A. O'Reilly; Aleksandra Bankovacki; Ueli Nachbur; Giuseppe Infusini; Andrew I. Webb; John Silke; Andreas Strasser; Gad Frankel; Elizabeth L. Hartland

Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.


Journal of Immunology | 2005

T Cell Determinants Incorporating β-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo

Andrew Ian Webb; Michelle Anne Dunstone; Nicholas A. Williamson; Jason D. Price; Andrea L. de Kauwe; Weisan Chen; Aaron J. Oakley; Patrick Perlmutter; James McCluskey; Marie-Isabel Aguilar; Jamie Rossjohn; Purcell Aw

A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of β-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding β-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with β-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using β-amino acids. We conclude that the rational incorporation of β-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring α-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.

Collaboration


Dive into the Nicholas A. Williamson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenjun Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge