Nicholas C. Bristowe
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas C. Bristowe.
Physical Review B | 2011
Nicholas C. Bristowe; Peter B. Littlewood; Emilio Artacho
The polar interface between LaAlO3 and SrTiO3 has shown promise as a field effect transistor, with reduced (nanoscale) feature sizes and potentially added functionality over conventional semiconductor systems. However, the mobility of the interfacial two-dimensional electron gas (2DEG) is lower than desirable. Therefore to progress, the highly debated origin of the 2DEG must be understood. Here we present a case for surface redox reactions as the origin of the 2DEG, in particular surface O vacancies, using a model supported by first-principles calculations that describes the redox formation. In agreement with recent spectroscopic and transport measurements, we predict a stabilization of such redox processes (and hence Ti 3d occupation) with film thickness beyond a critical value, which can be smaller than the critical thickness for 2D electronic conduction, since the surface defects generate trapping potentials that will affect the interface electron mobility. Several other recent experimental results, such as lack of core-level broadening and shifts, find a natural explanation. Pristine systems will likely require changed growth conditions or modified materials with a higher vacancy free energy.
ACS Nano | 2012
Amit Kumar; Thomas M. Arruda; Yunseok Kim; Ilia N. Ivanov; Stephen Jesse; Chung W. Bark; Nicholas C. Bristowe; Emilio Artacho; Peter B. Littlewood; Chang-Beom Eom; Sergei V. Kalinin
Local electrochemical phenomena on the surfaces of the LaAlO(3)-SrTiO(3) heterostructure are explored using unipolar and bipolar dynamic electrochemical strain microscopy (D-ESM). The D-ESM suggests the presence of at least two distinct electrochemical processes, including fast reversible low-voltage process and slow high-voltage process. The latter process is associated with static surface deformations in the sub-nanometer regime. These behaviors are compared with Kelvin probe force microscopy hysteresis data. The possible origins of observed phenomena are discussed, and these studies suggest that charge-writing behavior in LAO-STO includes a strong surface/bulk electrochemical component and is more complicated than simple screening by surface adsorbates.
Nature Communications | 2015
Nicholas C. Bristowe; Julien Varignon; Denis Fontaine; Eric Bousquet; Philippe Ghosez
In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn–Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hunds rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented.
Scientific Reports | 2015
Julien Varignon; Nicholas C. Bristowe; Eric Bousquet; Philippe Ghosez
Perovskite oxides are already widely used in industry and have huge potential for novel device applications thanks to the rich physical behaviour displayed in these materials. The key to the functional electronic properties exhibited by perovskites is often the so-called Jahn-Teller distortion. For applications, an electrical control of the Jahn-Teller distortions, which is so far out of reach, would therefore be highly desirable. Based on universal symmetry arguments, we determine new lattice mode couplings that can provide exactly this paradigm, and exemplify the effect from first-principles calculations. The proposed mechanism is completely general, however for illustrative purposes, we demonstrate the concept on vanadium based perovskites where we reveal an unprecedented orbital ordering and Jahn-Teller induced ferroelectricity. Thanks to the intimate coupling between Jahn-Teller distortions and electronic degrees of freedom, the electric field control of Jahn-Teller distortions is of general relevance and may find broad interest in various functional devices.
Journal of the American Chemical Society | 2017
Naihua Miao; Bin Xu; Nicholas C. Bristowe; Jian Zhou; Zhimei Sun
Atomically thin two-dimensional (2D) materials have received considerable research interest due to their extraordinary properties and promising applications. Here we predict the monolayered indium triphosphide (InP3) as a new semiconducting 2D material with a range of favorable functional properties by means of ab initio calculations. The 2D InP3 crystal shows high stability and promise of experimental synthesis. It possesses an indirect band gap of 1.14 eV and a high electron mobility of 1919 cm2 V-1 s-1, which can be strongly manipulated with applied strain. Remarkably, the InP3 monolayer suggests tunable magnetism and half-metallicity under hole doping or defect engineering, which is attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. A semiconductor-metal transition is also revealed by doping 2D InP3 with electrons. Furthermore, monolayered InP3 exhibits extraordinary optical absorption with significant excitonic effects in the entire range of the visible light spectrum. All these desired properties render 2D InP3 a promising candidate for future applications in a wide variety of technologies, in particular for electronic, spintronic, and photovoltaic devices.
Journal of the American Chemical Society | 2016
Mark S. Senn; Claire A. Murray; Xuan Luo; Lihai Wang; Fei-Ting Huang; Sang-Wook Cheong; A. Bombardi; Chris Ablitt; Arash A. Mostofi; Nicholas C. Bristowe
The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property.
Physical Review B | 2009
Nicholas C. Bristowe; Emilio Artacho; Peter B. Littlewood
The physics of oxide superlattices is considered for pristine (001) multilayers of the band insulators LaAlO(3) and SrTiO(3) with alternating p and n interfaces. A model of charged capacitor plates offers a simple paradigm to understand their dielectric properties and the insulator to metal transition (IMT) at interfaces with increasing layer thicknesses. The model is supported by first-principles results based on density-functional theory. The charge at insulating interfaces is argued and found to be as predicted from the formal ionic charges, not populations. Different relative layer thicknesses produce a spontaneous polarization of the system, and allow manipulation of the interfacial electron gas. Large piezoresistance effects can be obtained from the sensitivity of the IMT to lateral strain. Carrier densities are found to be ideal for exciton condensation.
Physical Review B | 2012
Nicholas C. Bristowe; Massimiliano Stengel; Peter B. Littlewood; J. M. Pruneda; Emilio Artacho
Against expectations, robust switchable ferroelectricity has been recently observed in ultrathin (1 nm) ferroelectric films exposed to air V. Garcia et al., Nature (London) 460, 81 (2009)]. Based on first-principles calculations, we show that the system does not polarize unless charged defects or adsorbates form at the surface. We propose electrochemical processes as the most likely origin of this charge. The ferroelectric polarization of the film adapts to the external ionic charge generated on its surface by redox processes when poling the film. This, in turn, alters the band alignment at the bottom electrode interface, explaining the observed tunneling electroresistance. Our conclusions are supported by energetics calculated for varied electrochemical scenarios.
Physical Review Letters | 2012
Nicholas C. Bristowe; Thomas Fix; M. G. Blamire; Peter B. Littlewood; Emilio Artacho
The two-dimensional electron gas at the interface between LaAlO(3) and SrTiO(3) has become one of the most fascinating and highly debated oxide systems of recent times. Here we propose that a one-dimensional electron gas can be engineered at the step edges of the LaAlO(3)/SrTiO(3) interface. These predictions are supported by first-principles calculations and electrostatic modeling which elucidate the origin of the one-dimensional electron gas as an electronic reconstruction to compensate a net surface charge in the step edge. The results suggest a novel route to increasing the functional density in these electronic interfaces.
Physical Review B | 2015
Pablo Aguado-Puente; Nicholas C. Bristowe; Binglun Yin; Raku Shirasawa; Philippe Ghosez; Peter B. Littlewood; Emilio Artacho
The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.