Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas D. Gansemer is active.

Publication


Featured researches published by Nicholas D. Gansemer.


Journal of Clinical Investigation | 2013

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs

David A. Stoltz; Tatiana Rokhlina; Sarah E. Ernst; Alejandro A. Pezzulo; Lynda S. Ostedgaard; Philip H. Karp; Melissa Samuel; Leah R. Reznikov; Michael V. Rector; Nicholas D. Gansemer; Drake C. Bouzek; Mahmoud H. Abou Alaiwa; Mark J. Hoegger; Paula S. Ludwig; Peter J. Taft; Tanner J Wallen; Christine L. Wohlford-Lenane; James D. McMenimen; Jeng-Haur Chen; Katrina L. Bogan; Ryan J. Adam; Emma E. Hornick; George A. Nelson; Eric A. Hoffman; Eugene H. Chang; Joseph Zabner; Paul B. McCray; Randall S. Prather; David K. Meyerholz; Michael J. Welsh

Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2014

pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37

Mahmoud H. Abou Alaiwa; Leah R. Reznikov; Nicholas D. Gansemer; Kelsey A. Sheets; Alexander R. Horswill; David A. Stoltz; Joseph Zabner; Michael J. Welsh

Significance Although lungs are continuously bombarded by bacteria, pulmonary defense mechanisms normally keep them sterile. Those defenses include a complex mixture of antimicrobial peptides in the thin layer of liquid coating the airway surface. In cystic fibrosis, impaired bicarbonate secretion causes the airway surface liquid to become abnormally acidic. Here we found that an acidic pH impairs the ability of two key airway antimicrobial peptides, β-defensin-3 and LL-37, to kill bacteria. When these peptides were combined, they exhibited synergistic killing of Staphylococcus aureus, an organism that infects cystic fibrosis lungs. However, an acidic pH reduced their synergistic effect. Thus, an acidic pH impairs an important respiratory defense mechanism and may predispose the lungs of people with cystic fibrosis to bacterial infection. The pulmonary airways are continuously exposed to bacteria. As a first line of defense against infection, the airway surface liquid (ASL) contains a complex mixture of antimicrobial factors that kill inhaled and aspirated bacteria. The composition of ASL is critical for antimicrobial effectiveness. For example, in cystic fibrosis an abnormally acidic ASL inhibits antimicrobial activity. Here, we tested the effect of pH on the activity of an ASL defensin, human β-defensin-3 (hBD-3), and the cathelicidin-related peptide, LL-37. We found that reducing pH from 8.0 to 6.8 reduced the ability of both peptides to kill Staphylococcus aureus. An acidic pH also attenuated LL-37 killing of Pseudomonas aeruginosa. In addition, we discovered synergism between hBD-3 and LL-37 in killing S. aureus. LL-37 and lysozyme were also synergistic. Importantly, an acidic pH reduced the synergistic effects of combinations of ASL antibacterials. These results indicate that an acidic pH reduces the activity of individual ASL antimicrobials, impairs synergism between them, and thus may disrupt an important airway host defense mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth

Mark P. Rogan; Leah R. Reznikov; Alejandro A. Pezzulo; Nicholas D. Gansemer; Melissa Samuel; Randall S. Prather; Joseph Zabner; Douglas C. Fredericks; Paul B. McCray; Michael J. Welsh; David A. Stoltz

People with cystic fibrosis (CF) exhibit growth defects. That observation has been attributed, in part, to decreased insulin-like growth factor 1 (IGF1) levels, and the reduction has been blamed on malnutrition and pulmonary inflammation. However, patients with CF already have a reduced weight at birth, a manifestation not likely secondary to poor nutrition or inflammation. We found that, like humans, CF pigs were smaller than non-CF littermates and had lower IGF1 levels. To better understand the basis of IGF1 reduction, we studied newborn pigs and found low IGF1 levels within 12 h of birth. Moreover, humerus length and bone mineral content were decreased, consistent with less IGF1 activity in utero. These findings led us to test newborn humans with CF, and we found that they also had reduced IGF1 levels. Discovering lower IGF1 levels in newborn pigs and humans indicates that the decrease is not solely a consequence of malnutrition or pulmonary inflammation and that loss of cystic fibrosis transmembrane conductance regulator function has a more direct effect. Consistent with this hypothesis, we discovered reduced growth hormone release in organotypic pituitary slice cultures of newborn CF pigs. These findings may explain the long-standing observation that CF newborns are smaller than non-CF babies and why some patients with good clinical status fail to reach their growth potential. The results also suggest that measuring IGF1 levels might be of value as a biomarker to predict disease severity or the response to therapeutics. Finally, they raise the possibility that IGF1 supplementation beginning in infancy might be beneficial in CF.


PLOS ONE | 2010

Isoform-Specific Regulation and Localization of the Coxsackie and Adenovirus Receptor in Human Airway Epithelia

Katherine J. D. A. Excoffon; Nicholas D. Gansemer; Matthew E. Mobily; Philip H. Karp; Kalpaj R. Parekh; Joseph Zabner

Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAREx7 and CAREx8). We found low-level expression of the CAREx8 isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAREx7, CAREx8 localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAREx7, CAREx8 differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAREx8 providing a potential mechanism for the apical localization of CAREx8 in airway epithelial. In summary, apical localization of CAREx8 may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.


Laryngoscope | 2012

Sinus hypoplasia precedes sinus infection in a porcine model of cystic fibrosis.

Eugene H. Chang; Alejandro A. Pezzulo; David K. Meyerholz; Andrea Potash; Tanner J Wallen; Leah R. Reznikov; Jessica C. Sieren; Philip H. Karp; Sarah E. Ernst; Thomas O. Moninger; Nicholas D. Gansemer; Paul B. McCray; David A. Stoltz; Michael J. Welsh; Joseph Zabner

Chronic sinusitis is nearly universal in humans with cystic fibrosis (CF) and is accompanied by sinus hypoplasia (small sinuses). However, whether impaired sinus development is a primary feature of loss of the cystic fibrosis transmembrane conductance regulator (CFTR) or a secondary consequence of chronic infection remains unknown. Our objective was to study the early pathogenesis of sinus disease in CF.


American Journal of Respiratory and Critical Care Medicine | 2013

Air Trapping and Airflow Obstruction in Newborn Cystic Fibrosis Piglets

Ryan J. Adam; Andrew S. Michalski; Christian Bauer; Mahmoud H. Abou Alaiwa; Thomas J. Gross; Maged Awadalla; Drake C. Bouzek; Nicholas D. Gansemer; Peter J. Taft; Mark J. Hoegger; Amit Diwakar; Matthias Ochs; Joseph M. Reinhardt; Eric A. Hoffman; Reinhard Beichel; David K. Meyerholz; David A. Stoltz

RATIONALE Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. OBJECTIVES To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. METHODS On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. MEASUREMENTS AND MAIN RESULTS On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. CONCLUSIONS The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.


The Journal of Infectious Diseases | 2008

Reovirus Preferentially Infects the Basolateral Surface and Is Released from the Apical Surface of Polarized Human Respiratory Epithelial Cells

Katherine J. D. A. Excoffon; Kristen M. Guglielmi; J. Denise Wetzel; Nicholas D. Gansemer; Jacquelyn A. Campbell; Terence S. Dermody; Joseph Zabner

Mammalian reoviruses infect respiratory and gastrointestinal epithelia and cause disease in neonates. Junctional adhesion molecule-A (JAM-A) is a serotype-independent receptor for reovirus. JAM-A localizes to tight junctions and contributes to paracellular permeability in polarized epithelia. To investigate the mechanisms of reovirus infection of polarized epithelial cells, we assessed reovirus replication, release, and spread after apical and basolateral adsorption to primary human airway epithelial cultures. Reovirus infection of human airway epithelia was more efficient after adsorption to the basolateral surface than after adsorption to the apical surface, and it was dependent on JAM-A. Reovirus binding to carbohydrate coreceptor sialic acid inhibited apical infection, which was partially ameliorated by treatment of the cultures with neuraminidase. Despite the preference for basolateral infection, reovirus was released from the apical surface of respiratory epithelia and did not disrupt tight junctions. These results establish the existence of an infectious circuit for reovirus in polarized human respiratory epithelial cells.


Journal of Virology | 2007

Functional Effects of Coxsackievirus and Adenovirus Receptor Glycosylation on Homophilic Adhesion and Adenoviral Infection

Katherine J. D. A. Excoffon; Nicholas D. Gansemer; Geri L. Traver; Joseph Zabner

ABSTRACT The coxsackievirus and adenovirus receptor (CAR) is both a viral receptor and homophilic adhesion protein. The extracellular portion of CAR consists of two immunoglobulin (Ig)-like domains, each with a consensus sequence for N-glycosylation. We used chemical, genetic, and biochemical studies to show that both sites are glycosylated and contribute to the function of CAR. Although the glycosylation of CAR does not alter cell surface levels or junctional localization, it affects both adhesion and adenovirus infection in unique ways. CAR-mediated adhesion appears to require at least one site of glycosylation since cells expressing CAR without glycosylation do not cluster with each other. In contrast, glycosylation of the Ig-like domain proximal to the membrane is key to the cooperative behavior of adenovirus binding and infection. Contrary to the hypothesis that cooperativity improves viral infection, our data show that although glycosylation of the D2 domain is required for adenovirus cooperative binding, it has a negative consequence upon infection. This is the first report dissecting the adhesion and receptor activities of CAR, revealing that factors other than the binding interface play a significant role in the function of CAR. These data have important implications for both cancers with altered glycosylation states and cancer treatments using oncolytic adenovirus.


American Journal of Respiratory and Critical Care Medicine | 2016

Cystic fibrosis transmembrane conductance regulator in sarcoplasmic reticulum of airway smooth muscle: Implications for airway contractility

Daniel P. Cook; Michael V. Rector; Drake C. Bouzek; Andrew S. Michalski; Nicholas D. Gansemer; Leah R. Reznikov; Xiaopeng Li; Mallory R. Stroik; Lynda S. Ostedgaard; Mahmoud H. Abou Alaiwa; Michael A. Thompson; Y. S. Prakash; Ramaswamy Krishnan; David K. Meyerholz; Chun Y. Seow; David A. Stoltz

RATIONALE An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. OBJECTIVES Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. METHODS Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. MEASUREMENTS AND MAIN RESULTS We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. CONCLUSIONS Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing.


Applied and Environmental Microbiology | 2013

Abundant DNase I-sensitive bacterial DNA in healthy porcine lungs and its implications for the lung microbiome.

Alejandro A. Pezzulo; Patrick H. Kelly; Boulos S. Nassar; Cedric J. Rutland; Nicholas D. Gansemer; Cassie L. Dohrn; Andrew J. Costello; David A. Stoltz; Joseph Zabner

ABSTRACT Human lungs are constantly exposed to bacteria in the environment, yet the prevailing dogma is that healthy lungs are sterile. DNA sequencing-based studies of pulmonary bacterial diversity challenge this notion. However, DNA-based microbial analysis currently fails to distinguish between DNA from live bacteria and that from bacteria that have been killed by lung immune mechanisms, potentially causing overestimation of bacterial abundance and diversity. We investigated whether bacterial DNA recovered from lungs represents live or dead bacteria in bronchoalveolar lavage (BAL) fluid and lung samples in young healthy pigs. Live bacterial DNA was DNase I resistant and became DNase I sensitive upon human antimicrobial-mediated killing in vitro. We determined live and total bacterial DNA loads in porcine BAL fluid and lung tissue by comparing DNase I-treated versus untreated samples. In contrast to the case for BAL fluid, we were unable to culture bacteria from most lung homogenates. Surprisingly, total bacterial DNA was abundant in both BAL fluid and lung homogenates. In BAL fluid, 63% was DNase I sensitive. In 6 out of 11 lung homogenates, all bacterial DNA was DNase I sensitive, suggesting a predominance of dead bacteria; in the remaining homogenates, 94% was DNase I sensitive, and bacterial diversity determined by 16S rRNA gene sequencing was similar in DNase I-treated and untreated samples. Healthy pig lungs are mostly sterile yet contain abundant DNase I-sensitive DNA from inhaled and aspirated bacteria killed by pulmonary host defense mechanisms. This approach and conceptual framework will improve analysis of the lung microbiome in disease.

Collaboration


Dive into the Nicholas D. Gansemer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Stoltz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mahmoud H. Abou Alaiwa

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro A. Pezzulo

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David K. Meyerholz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Drake C. Bouzek

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Leah R. Reznikov

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge