Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas De Marco is active.

Publication


Featured researches published by Nicholas De Marco.


Nature Nanotechnology | 2016

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

Jingbi You; Lei Meng; Tze-Bin Song; Tzung-Fang Guo; Yang (Michael) Yang; Wei-Hsuan Chang; Ziruo Hong; Huajun Chen; Huanping Zhou; Qi Chen; Yongsheng Liu; Nicholas De Marco

Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.


Nano Letters | 2016

Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells

Nicholas De Marco; Huanping Zhou; Qi Chen; Pengyu Sun; Zonghao Liu; Lei Meng; En-Ping Yao; Yongsheng Liu; Andy Schiffer; Yang Yang

Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.


ACS Nano | 2015

Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells

Yang Yang; Qi Chen; Yao-Tsung Hsieh; Tze-Bin Song; Nicholas De Marco; Huanping Zhou

Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.


Journal of Materials Chemistry | 2015

Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives

Hsin-Hua Wang; Qi Chen; Huanping Zhou; Luo Song; Zac St Louis; Nicholas De Marco; Yihao Fang; Pengyu Sun; Tze-Bin Song; Huajun Chen; Yang Yang

We developed a facile and quantitative method to improve the electron transport properties and resulting device performances of perovskite solar cells based on post-incorporation of various acetylacetonate additives. Previous studies rely on synthesis or soaking processes with limited additive control. Here, our acetylacetonated-based additives are used as effective intermediate gels to interact with TiO2 nanocrystals using a simple approach. The incorporation process can be controlled effectively and quantitatively using a range of additives from divalent (II), trivalent (III), and tetravalent (IV) to hexavalent (VI) acetylacetonate. Electronic parameters of solar cell devices, such as short circuit current (Jsc) and fill factor (FF), are enhanced, regardless of the different valencies of the additives. Zirconium(IV) acetylacetonate was found to be the most effective additive, with average PCE improved from 15.0% to 15.8%. Detailed characterization experiments including transient photoluminescence spectra, ultra-violet photoelectron spectroscopy, photovoltage decay, and photocurrent decay indicate an improved interface with improved carrier extraction originating from the TiO2 modification.


Nano Letters | 2017

Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells

Lijian Zuo; Qi Chen; Nicholas De Marco; Yao-Tsung Hsieh; Huajun Chen; Pengyu Sun; Sheng-Yung Chang; Hongxiang Zhao; Shiqi Dong; Yang Yang

The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.


Science Advances | 2017

Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells

Lijian Zuo; Hexia Guo; Dane W. deQuilettes; Sarthak Jariwala; Nicholas De Marco; Shiqi Dong; Ryan H. DeBlock; David S. Ginger; Bruce S. Dunn; Mingkui Wang; Yang Yang

The UCLA team has successfully passivated perovskite film by controlling the film growth with functional polymers as additive. The solution processing of polycrystalline perovskite films introduces trap states that can adversely affect their optoelectronic properties. Motivated by the use of small-molecule surfactants to improve the optoelectronic performance of perovskites, we demonstrate the use of polymers with coordinating groups to improve the performance of solution-processed semiconductor films. The use of these polymer modifiers results in a marked change in the electronic properties of the films, as measured by both carrier dynamics and overall device performance. The devices grown with the polymer poly(4-vinylpyridine) (PVP) show significantly enhanced power conversion efficiency from 16.9 ± 0.7% to 18.8 ± 0.8% (champion efficiency, 20.2%) from a reverse scan and stabilized champion efficiency from 17.5 to 19.1% [under a bias of 0.94 V and AM (air mass) 1.5-G, 1-sun illumination over 30 min] compared to controls without any passivation. Treating the perovskite film with PVP enables a VOC of up to 1.16 V, which is among the best reported for a CH3NH3PbI3 perovskite solar cell and one of the lowest voltage deficits reported for any perovskite to date. In addition, perovskite solar cells treated with PVP show a long shelf lifetime of up to 90 days (retaining 85% of the initial efficiency) and increased by a factor of more than 20 compared to those without any polymer (degrading to 85% after ~4 days). Our work opens up a new class of chemical additives for improving perovskite performance and should pave the way toward improving perovskite solar cells for high efficiency and stability.


ACS Applied Materials & Interfaces | 2016

Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells

Zonghao Liu; Qi Chen; Ziruo Hong; Huanping Zhou; Xiaobao Xu; Nicholas De Marco; Pengyu Sun; Zhixin Zhao; Yi-Bing Cheng; Yang Yang

Here, we demonstrate an effective low-temperature approach to fabricate a uniform and pinhole-free compact TiO2 layer for enhancing photovoltaic performance of perovskite solar cells. TiCl4 was used to modify TiO2 for efficient charge generation and significantly reduced recombination loss. We found that a TiO2 layer with an appropriate TiCl4 treatment possesses a smooth surface with full coverage of the conductive electrode. Further studies on charge carrier dynamics confirmed that the TiCl4 treatment improves the contact of the TiO2/perovskite interface, facilitating charge extraction and suppressing charge recombination. On the basis of the treatment, we improved the open circuit voltage from 1.01 V of the reference cell to 1.08 V, and achieved a power conversion efficiency of 16.4%.


Nano Letters | 2015

Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture

Xiaobao Xu; Qi Chen; Ziruo Hong; Huanping Zhou; Zonghao Liu; Wei-Hsuan Chang; Pengyu Sun; Huajun Chen; Nicholas De Marco; Mingkui Wang; Yang Yang

In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.


Journal of Physical Chemistry Letters | 2017

Halide Perovskites for Tandem Solar Cells

Jin-Wook Lee; Yao-Tsung Hsieh; Nicholas De Marco; Sang-Hoon Bae; Qifeng Han; Yang Yang

Perovskite solar cells have become one of the strongest candidates for next-generation solar energy technologies. A myriad of beneficial optoelectronic properties of the perovskite materials have enabled superb power conversion efficiencies (PCE) exceeding 22% for a single-junction device. The high PCE achievable via low processing costs and relatively high variability in optical properties have opened new possibilities for perovskites in tandem solar cells. In this Perspective, we will discuss current research trends in fabricating tandem perovskite-based solar cells in combination with a variety of mature photovoltaic devices such as organic, silicon, and Cu(In,Ga)(S,Se)2 (CIGS) solar cells. Characteristic features and present limitations of each tandem cell will be discussed and elaborated upon. Finally, key issues for further improvement and the future outlook will be discussed.


Scientific Reports | 2016

Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

Hidetaka Ishihara; Yen-Chang Chen; Nicholas De Marco; Oliver Lin; Chih-Meng Huang; Vipawee Limsakoune; Yi-Chia Chou; Yang Yang; Vincent Tung

The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.

Collaboration


Dive into the Nicholas De Marco's collaboration.

Top Co-Authors

Avatar

Yang Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Pengyu Sun

University of California

View shared research outputs
Top Co-Authors

Avatar

Qi Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Wook Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Sang-Hoon Bae

University of California

View shared research outputs
Top Co-Authors

Avatar

Huajun Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Hongxiang Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar

Lijian Zuo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge