Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas E. Houstis is active.

Publication


Featured researches published by Nicholas E. Houstis.


Nature Genetics | 2003

PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

Vamsi K. Mootha; Cecilia M. Lindgren; Karl-Fredrik Eriksson; Aravind Subramanian; Smita Sihag; Joseph Lehar; Pere Puigserver; Emma Carlsson; Martin Ridderstråle; Esa Laurila; Nicholas E. Houstis; Mark J. Daly; Nick Patterson; Jill P. Mesirov; Todd R. Golub; Pablo Tamayo; Bruce M. Spiegelman; Eric S. Lander; Joel N. Hirschhorn; David Altshuler; Leif Groop

DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.


Nature | 2006

Reactive oxygen species have a causal role in multiple forms of insulin resistance

Nicholas E. Houstis; Evan D. Rosen; Eric S. Lander

Insulin resistance is a cardinal feature of type 2 diabetes and is characteristic of a wide range of other clinical and experimental settings. Little is known about why insulin resistance occurs in so many contexts. Do the various insults that trigger insulin resistance act through a common mechanism? Or, as has been suggested, do they use distinct cellular pathways? Here we report a genomic analysis of two cellular models of insulin resistance, one induced by treatment with the cytokine tumour-necrosis factor-α and the other with the glucocorticoid dexamethasone. Gene expression analysis suggests that reactive oxygen species (ROS) levels are increased in both models, and we confirmed this through measures of cellular redox state. ROS have previously been proposed to be involved in insulin resistance, although evidence for a causal role has been scant. We tested this hypothesis in cell culture using six treatments designed to alter ROS levels, including two small molecules and four transgenes; all ameliorated insulin resistance to varying degrees. One of these treatments was tested in obese, insulin-resistant mice and was shown to improve insulin sensitivity and glucose homeostasis. Together, our findings suggest that increased ROS levels are an important trigger for insulin resistance in numerous settings.


Diabetes | 2007

The Adipokine Lipocalin 2 Is Regulated by Obesity and Promotes Insulin Resistance

Qing-Wu Yan; Qin Yang; Nimesh Mody; Tim Graham; Chung-Hsin Hsu; Zhao Xu; Nicholas E. Houstis; Barbara B. Kahn; Evan D. Rosen

OBJECTIVE—We identified lipocalin 2 (Lcn2) as a gene induced by dexamethasone and tumor necrosis factor-α in cultured adipocytes. The purpose of this study was to determine how expression of Lcn2 is regulated in fat cells and to ascertain whether Lcn2 could be involved in metabolic dysregulation associated with obesity. RESEARCH DESIGN AND METHODS—We examined Lcn2 expression in murine tissues and in 3T3-L1 adipocytes in the presence and absence of various stimuli. We used quantitative Western blotting to observe Lcn2 serum levels in lean and obese mouse models. To assess effects on insulin action, we used retroviral delivery of short hairpin RNA to reduce Lcn2 levels in 3T3-L1 adipocytes. RESULTS—Lcn2 is highly expressed by fat cells in vivo and in vitro. Expression of Lcn2 is elevated by agents that promote insulin resistance and is reduced by thiazolidinediones. The expression of Lcn2 is induced during 3T3-L1 adipogenesis in a CCAAT/enhancer-binding protein–dependent manner. Lcn2 serum levels are elevated in multiple rodent models of obesity, and forced reduction of Lcn2 in 3T3-L1 adipocytes improves insulin action. Exogenous Lcn2 promotes insulin resistance in cultured hepatocytes. CONCLUSIONS—Lcn2 is an adipokine with potential importance in insulin resistance associated with obesity.


Circulation-heart Failure | 2015

Mechanisms of Exercise Intolerance in Heart Failure With Preserved Ejection Fraction The Role of Abnormal Peripheral Oxygen Extraction

Bishnu P. Dhakal; Rajeev Malhotra; Ryan M. Murphy; Paul P. Pappagianopoulos; Aaron L. Baggish; Rory B. Weiner; Nicholas E. Houstis; Aaron S. Eisman; Stacyann S. Hough; Gregory D. Lewis

Background—Exercise capacity as measured by peak oxygen uptake (VO2) is similarly impaired in patients with heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). However, characterization of how each component of VO2 changes in response to incremental exercise in HFpEF versus HFrEF has not been previously defined. We hypothesized that abnormally low peripheral o2 extraction (arterio-mixed venous o2 content difference, [C(a-v)o2]) during exercise significantly contributes to impaired exercise capacity in HFpEF. Methods and Results—We performed maximum incremental cardiopulmonary exercise testing with invasive hemodynamic monitoring on 104 patients with symptomatic NYHA II to IV heart failure (HFpEF, n=48, peak VO2=13.9±0.5 mL kg−1 min−1, mean±SEM, and HFrEF, n=56, peak VO2=12.1±0.5 mL kg−1 min−1) and 24 control subjects (peak VO2 27.0±1.7 mL kg−1 min−1). Peak exercise C(a-v)o2 was lower in HFpEF compared with HFrEF (11.5±0.27 versus 13.5±0.34 mL/dL, respectively, P<0.0001), despite no differences in age, hemoglobin level, peak respiratory exchange ratio, CaO2, or cardiac filling pressures. Peak C(a-v)o2 and peak heart rate emerged as the leading predictors of peak VO2 in HFpEF. Impaired peripheral o2 extraction was the predominant limiting factor to exercise capacity in 40% of patients with HFpEF and was closely related to elevated systemic blood pressure during exercise (r=0.49, P=0.0005). Conclusions—In the first study to directly measure C(a-v)o2 throughout exercise in HFpEF, HFrEF, and normals, we found that peak C(a-v)o2 was a major determinant of exercise capacity in HFpEF. The important functional limitation imposed by impaired o2 extraction may reflect intrinsic abnormalities in skeletal muscle or peripheral microvascular function, and represents a potential target for therapeutic intervention.


Journal of Experimental Medicine | 2018

Cardiac macrophages promote diastolic dysfunction

Maarten Hulsmans; Hendrik B. Sager; Jason D. Roh; María Valero-Muñoz; Nicholas E. Houstis; Yoshiko Iwamoto; Yuan Sun; Richard M. Wilson; Gregory R. Wojtkiewicz; Benoit Tricot; Michael T. Osborne; Judy Hung; Claudio Vinegoni; Kamila Naxerova; David E. Sosnovik; Michael R. Zile; Amy D. Bradshaw; Ronglih Liao; Ahmed Tawakol; Ralph Weissleder; Anthony Rosenzweig; Filip K. Swirski; Flora Sam; Matthias Nahrendorf

Macrophages populate the healthy myocardium and, depending on their phenotype, may contribute to tissue homeostasis or disease. Their origin and role in diastolic dysfunction, a hallmark of cardiac aging and heart failure with preserved ejection fraction, remain unclear. Here we show that cardiac macrophages expand in humans and mice with diastolic dysfunction, which in mice was induced by either hypertension or advanced age. A higher murine myocardial macrophage density results from monocyte recruitment and increased hematopoiesis in bone marrow and spleen. In humans, we observed a parallel constellation of hematopoietic activation: circulating myeloid cells are more frequent, and splenic 18F-FDG PET/CT imaging signal correlates with echocardiographic indices of diastolic dysfunction. While diastolic dysfunction develops, cardiac macrophages produce IL-10, activate fibroblasts, and stimulate collagen deposition, leading to impaired myocardial relaxation and increased myocardial stiffness. Deletion of IL-10 in macrophages improves diastolic function. These data imply expansion and phenotypic changes of cardiac macrophages as therapeutic targets for cardiac fibrosis leading to diastolic dysfunction.


Journal of Cardiac Failure | 2014

Causes of Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Searching for Consensus

Nicholas E. Houstis; Gregory D. Lewis

Exercise intolerance is one of the cardinal symptoms of heart failure with preserved ejection fraction (HFpEF). We review its mechanistic basis using evidence from exercise studies. One barrier to a consensus understanding of the pathophysiology is heterogeneity of the patient population. Therefore, we pay special attention to varying study definitions of the disease and their possible impact on the causal factors that are implicated. We then discuss the role of exercise testing and its potential to subtype HFpEF in to more homogeneous mechanism-based subclasses.


Cell Metabolism | 2015

Using Exercise to Measure and Modify Cardiac Function

Colin Platt; Nicholas E. Houstis; Anthony Rosenzweig

Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.


Circulation | 2018

Exercise intolerance in heart failure with preserved ejection fraction: Diagnosing and ranking Its causes using personalized O2pathway analysis

Nicholas E. Houstis; Aaron S. Eisman; Paul P. Pappagianopoulos; Luke Wooster; Cole S. Bailey; Peter D. Wagner; Gregory D. Lewis

Background: Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with a pressing shortage of therapies. Exercise intolerance is a cardinal symptom of HFpEF, yet its pathophysiology remains uncertain. Methods: We investigated the mechanism of exercise intolerance in 134 patients referred for cardiopulmonary exercise testing: 79 with HFpEF and 55 controls. We performed cardiopulmonary exercise testing with invasive monitoring to measure hemodynamics, blood gases, and gas exchange during exercise. We used these measurements to quantify 6 steps of oxygen transport and utilization (the O2 pathway) in each patient with HFpEF, identifying the defective steps that impair each one’s exercise capacity (peak Vo2). We then quantified the functional significance of each O2 pathway defect by calculating the improvement in exercise capacity a patient could expect from correcting the defect. Results: Peak Vo2 was reduced by 34±2% (mean±SEM, P<0.001) in HFpEF compared with controls of similar age, sex, and body mass index. The vast majority (97%) of patients with HFpEF harbored defects at multiple steps of the O2 pathway, the identity and magnitude of which varied widely. Two of these steps, cardiac output and skeletal muscle O2 diffusion, were impaired relative to controls by an average of 27±3% and 36±2%, respectively (P<0.001 for both). Due to interactions between a given patient’s defects, the predicted benefit of correcting any single one was often minor; on average, correcting a patient’s cardiac output led to a 7±0.5% predicted improvement in exercise intolerance, whereas correcting a patient’s muscle diffusion capacity led to a 27±1% improvement. At the individual level, the impact of any given O2 pathway defect on a patient’s exercise capacity was strongly influenced by comorbid defects. Conclusions: Systematic analysis of the O2 pathway in HFpEF showed that exercise capacity was undermined by multiple defects, including reductions in cardiac output and skeletal muscle diffusion capacity. An important source of disease heterogeneity stemmed from variation in each patient’s personal profile of defects. Personalized O2 pathway analysis could identify patients most likely to benefit from treating a specific defect; however, the system properties of O2 transport favor treating multiple defects at once, as with exercise training.


Circulation Research | 2017

Why Don’t We Have Proven Treatments for HFpEF?

Jason Roh; Nicholas E. Houstis; Anthony Rosenzweig

The lack of effective treatments for heart failure with preserved ejection fraction represents a large and growing unmet need in cardiology today. A critical obstacle to therapeutic innovation in heart failure with preserved ejection fraction has been the absence of animal models that accurately recapitulate the complexities of the human disease. Here, we propose that more comprehensive multi organ system and functional phenotyping of preclinical models is essential if we are to maximize our chances of discovering and validating novel targets for effective therapeutic development in heart failure with preserved ejection fraction . At this time in human history, we are witnessing an unprecedented aging of populations around the world. By 2050, the number of individuals >65 years will nearly triple to ≈1.5 billion, accounting for ≈16% of the world’s population.1 Although cardiology, and medicine more generally, can appropriately take enormous pride in the progress made in extending human lifespan, we must also recognize that as our populations age, so will the clinical landscape. Perhaps the quintessential example of how the evolution of human longevity is changing the face of medicine is the emerging epidemic of heart failure with preserved ejection fraction (HFpEF). Often described as a disease of the elderly, trends in HFpEF have closely paralleled the change in global ageing demographics. In the United States, the prevalence of HFpEF, relative to heart failure with reduced ejection fraction (HFrEF), is increasing at an alarming rate of 1%/y with the overwhelming majority of patients being >65 years.2 Importantly, the prognosis for HFpEF remains poor with mortality rates comparable with HFrEF.2 Unfortunately, although tremendous strides have been made in improving mortality in HFrEF, no pharmacological therapy, including our armament of neurohormonal antagonists, has demonstrated similar benefits in HFpEF. In fact, no large-scale clinical trial of medical therapy has …


Circulation-heart Failure | 2015

Mechanisms of Exercise Intolerance in Heart Failure With Preserved Ejection FractionCLINICAL PERSPECTIVE: The Role of Abnormal Peripheral Oxygen Extraction

Bishnu P. Dhakal; Rajeev Malhotra; Ryan M. Murphy; Paul P. Pappagianopoulos; Aaron L. Baggish; Rory B. Weiner; Nicholas E. Houstis; Aaron S. Eisman; Stacyann S. Hough; Gregory D. Lewis

Background—Exercise capacity as measured by peak oxygen uptake (VO2) is similarly impaired in patients with heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). However, characterization of how each component of VO2 changes in response to incremental exercise in HFpEF versus HFrEF has not been previously defined. We hypothesized that abnormally low peripheral o2 extraction (arterio-mixed venous o2 content difference, [C(a-v)o2]) during exercise significantly contributes to impaired exercise capacity in HFpEF. Methods and Results—We performed maximum incremental cardiopulmonary exercise testing with invasive hemodynamic monitoring on 104 patients with symptomatic NYHA II to IV heart failure (HFpEF, n=48, peak VO2=13.9±0.5 mL kg−1 min−1, mean±SEM, and HFrEF, n=56, peak VO2=12.1±0.5 mL kg−1 min−1) and 24 control subjects (peak VO2 27.0±1.7 mL kg−1 min−1). Peak exercise C(a-v)o2 was lower in HFpEF compared with HFrEF (11.5±0.27 versus 13.5±0.34 mL/dL, respectively, P<0.0001), despite no differences in age, hemoglobin level, peak respiratory exchange ratio, CaO2, or cardiac filling pressures. Peak C(a-v)o2 and peak heart rate emerged as the leading predictors of peak VO2 in HFpEF. Impaired peripheral o2 extraction was the predominant limiting factor to exercise capacity in 40% of patients with HFpEF and was closely related to elevated systemic blood pressure during exercise (r=0.49, P=0.0005). Conclusions—In the first study to directly measure C(a-v)o2 throughout exercise in HFpEF, HFrEF, and normals, we found that peak C(a-v)o2 was a major determinant of exercise capacity in HFpEF. The important functional limitation imposed by impaired o2 extraction may reflect intrinsic abnormalities in skeletal muscle or peripheral microvascular function, and represents a potential target for therapeutic intervention.

Collaboration


Dive into the Nicholas E. Houstis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge