Nicholas F. Dybdal-Hargreaves
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas F. Dybdal-Hargreaves.
Clinical Cancer Research | 2015
Nicholas F. Dybdal-Hargreaves; April L. Risinger; Susan L. Mooberry
Eribulin mesylate (eribulin), an analogue of the marine natural product halichondrin B, is a microtubule-depolymerizing drug that has utility in the treatment of patients with breast cancer. Clinical trial results have demonstrated that eribulin treatment provides a survival advantage to patients with metastatic or locally advanced breast cancer previously treated with an anthracycline and a taxane. Furthermore, a pooled analysis of two pivotal phase III trials has demonstrated that eribulin also improves overall survival in several patient subgroups, including in women with HER2-negative disease and triple-negative breast cancer. This review covers the preclinical research that led to the clinical testing and approval of eribulin, as well as subsequent research that was prompted by distinct and unexpected effects of eribulin in the clinic. Initial studies with halichondrin B demonstrated unique effects on tubulin binding that resulted in distinct microtubule-dependent events and antitumor actions. Consistent with the actions of the natural product, eribulin has potent microtubule-depolymerizing activities and properties that distinguish it from other microtubule-targeting agents. Here, we review new results that further differentiate the effects of eribulin from other agents on peripheral nerves, angiogenesis, vascular remodeling, and epithelial-to-mesenchymal transition. Together, these data highlight the distinct properties of eribulin and begin to delineate the mechanisms behind the increased survival benefit provided by eribulin for patients. Clin Cancer Res; 21(11); 2445–52. ©2015 AACR.
Bioorganic & Medicinal Chemistry | 2014
Xin Zhang; Sudhir Raghavan; Michael A. Ihnat; Jessica E. Thorpe; Bryan C. Disch; Anja Bastian; Lora C. Bailey-Downs; Nicholas F. Dybdal-Hargreaves; Cristina C. Rohena; Ernest Hamel; Susan L. Mooberry; Aleem Gangjee
The design, synthesis and biological evaluations of fourteen 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines are reported. Four compounds (11-13, 15) inhibit vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor β (PDGFR-β), and target tubulin leading to cytotoxicity. Compound 11 has nanomolar potency, comparable to sunitinib and semaxinib, against tumor cell lines overexpressing VEGFR-2 and PDGFR-β. Further, 11 binds at the colchicine site on tubulin, depolymerizes cellular microtubules and inhibits purified tubulin assembly and overcomes both βIII-tubulin and P-glycoprotein-mediated drug resistance, and initiates mitotic arrest leading to apoptosis. In vivo, its HCl salt, 21, reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity. Thus 21 affords potential combination chemotherapy in a single agent.
European Journal of Medicinal Chemistry | 2015
Ramesh Dasari; Annelise De Carvalho; Derek C. Medellin; Kelsey N. Middleton; Frédéric Hague; Marie N M Volmar; Liliya V. Frolova; Mateus Rossato; Jorge J. De La Chapa; Nicholas F. Dybdal-Hargreaves; Akshita Pillai; Roland E. Kälin; Véronique Mathieu; Snezna Rogelj; Cara B. Gonzales; João B. Calixto; Antonio Evidente; Mathieu Gautier; Gnanasekar Munirathinam; Rainer Glass; Patrícia Burth; Stephen C. Pelly; Willem A. L. van Otterlo; Robert Kiss; Alexander Kornienko
Many types of cancer, including glioma, melanoma, non-small cell lung cancer (NSCLC), among others, are resistant to proapoptotic stimuli and thus poorly responsive to current therapies based on the induction of apoptosis in cancer cells. The current investigation describes the synthesis and anticancer evaluation of unique C12-Wittig derivatives of polygodial, a sesquiterpenoid dialdehyde isolated from Persicaria hydropiper (L.) Delabre. These compounds were found to undergo an unprecedented pyrrole formation with primary amines in a chemical model system, a reaction that could be relevant in the biological environment and lead to the pyrrolation of lysine residues in the target proteins. The anticancer evaluation of these compounds revealed their promising activity against cancer cells displaying various forms of drug resistance, including resistance to proapoptotic agents. Mechanistic studies indicated that compared to the parent polygodial, which displays fixative general cytotoxic action against human cells, the C12-Wittig derivatives exerted their antiproliferative action mainly through cytostatic effects explaining their activity against apoptosis-resistant cancer cells. The possibility for an intriguing covalent modification of proteins through a novel pyrrole formation reaction, as well as useful activities against drug resistant cancer cells, make the described polygodial-derived chemical scaffold an interesting new chemotype warranting thorough investigation.
ChemMedChem | 2015
Ramesh Dasari; Annelise De Carvalho; Derek C. Medellin; Kelsey N. Middleton; Frédéric Hague; Marie N M Volmar; Liliya V. Frolova; Mateus Rossato; Jorge J. De La Chapa; Nicholas F. Dybdal-Hargreaves; Akshita Pillai; Véronique Mathieu; Snezna Rogelj; Cara B. Gonzales; João B. Calixto; Antonio Evidente; Mathieu Gautier; Gnanasekar Munirathinam; Rainer Glass; Patrícia Burth; Stephen C. Pelly; Willem A. L. van Otterlo; Robert Kiss; Alexander Kornienko
Polygodial, a terpenoid dialdehyde isolated from Polygonum hydropiper L., is a known agonist of the transient receptor potential vanilloid 1 (TRPV1). In this investigation a series of polygodial analogues were prepared and investigated for TRPV1‐agonist and anticancer activities. These experiments led to the identification of 9‐epipolygodial, which has antiproliferative potency significantly exceeding that of polygodial. 9‐Epipolygodial was found to maintain potency against apoptosis‐resistant cancer cells as well as those displaying the multidrug‐resistant (MDR) phenotype. In addition, the chemical feasibility for the previously proposed mechanism of action of polygodial, involving the formation of a Paal–Knorr pyrrole with a lysine residue on the target protein, was demonstrated by the synthesis of a stable polygodial pyrrole derivative. These studies reveal rich chemical and biological properties associated with polygodial and its direct derivatives. These compounds should inspire further work in this area aimed at the development of new pharmacological agents, or the exploration of novel mechanisms of covalent modification of biological molecules with natural products.
Bioorganic & Medicinal Chemistry | 2013
Aleem Gangjee; Nilesh Zaware; Ravi Kumar Vyas Devambatla; Sudhir Raghavan; Cara Westbrook; Nicholas F. Dybdal-Hargreaves; Ernest Hamel; Susan L. Mooberry
A series of fourteen N(4)-(substituted phenyl)-N(4)-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI(50) values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [(3)H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug resistance. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site.
Oral Oncology | 2016
Cara B. Gonzales; Jorge J. De La Chapa; Pothana Saikumar; Prajjal K. Singha; Nicholas F. Dybdal-Hargreaves; Jeffery Chavez; Aaron M. Horning; Jamie Parra; Nameer B. Kirma
Squamous cell carcinoma (SCC) comprises 90% of all head and neck cancers and has a poor survival rate due to late-stage disease that is refractive to traditional therapies. Epidermal growth factor receptor (EGFR) is over-expressed in greater than 80% of head and neck SCC (HNSCC). However, EGFR targeted therapies yielded little to no efficacy in clinical trials. This study investigated the efficacy of co-targeting EGFR and the anaplastic lymphoma kinase (ALK) whose promoter is hypomethylated in late-stage oral SCC (OSCC). We observed increased ALK activity in late-stage human OSCC tumors and invasive OSCC cell lines. We also found that while ALK inhibition alone had little effect on proliferation, co-targeting ALK and EGFR significantly reduced OSCC cell proliferation in vitro. Further analysis showed significant efficacy of combined treatment in HSC3-derived xenografts resulting in a 30% decrease in tumor volumes by 14days (p<0.001). Western blot analysis showed that co-targeting ALK and EGFR significantly reduced EGFR phosphorylation (Y1148) in HSC3 cells but not Cal27 cells. ALK and EGFR downstream signaling interactions are also demonstrated by Western blot analysis in which lone EGFR and ALK inhibitors attenuated AKT activity whereas co-targeting ALK and EGFR completely abolished AKT activation. No effects were observed on ERK1/2 activation. STAT3 activity was significantly induced by lone ALK inhibition in HSC3 cells and to a lower extent in Cal27 cells. Together, these data illustrate that ALK inhibitors enhance anti-tumor activity of EGFR inhibitors in susceptible tumors that display increased ALK expression, most likely through abolition of AKT activation.
Oncotarget | 2017
Nicholas F. Dybdal-Hargreaves; April L. Risinger; Susan L. Mooberry
Microtubule targeting agents (MTAs) are some of the most effective anticancer drugs used to treat a wide variety of adult and pediatric cancers. Building evidence suggests that these drugs inhibit interphase signaling events and that this contributes to their anticancer actions. The effects of diverse MTAs were evaluated following a 2 hour incubation with clinically relevant concentrations to test the hypothesis that these drugs rapidly and differentially disrupt epithelial-to-mesenchymal transition (EMT)-related signaling. The MTAs rapidly promoted the cortical localization of internal pools of E-cadherin in HCC1937 breast cancer cells, with the most robust effects observed with the microtubule destabilizers eribulin and vinorelbine. Cortical E-cadherin localization was also promoted by the Src kinase inhibitor dasatinib or by siRNA-mediated depletion of the p130Cas scaffold. Mechanistic studies demonstrate that eribulin disrupts the interaction between p130Cas and Src, leading to decreased cortical Src phosphorylation that precedes the accumulation of cortical E-cadherin. These results suggest that microtubules can be actively co-opted by cancer cells to inhibit cortical E-cadherin localization, a hallmark of EMT, and provide a direct link between the initial disruption of the microtubule network and reversal of EMT phenotypes demonstrated by eribulin in long-term studies.
Molecules | 2016
Cristina C. Rohena; April L. Risinger; Ravi Kumar Vyas Devambatla; Nicholas F. Dybdal-Hargreaves; Roma Kaul; Shruti Choudhary; Aleem Gangjee; Susan L. Mooberry
While evaluating a large library of compounds designed to inhibit microtubule polymerization, we identified four compounds that have unique effects on microtubules. These compounds cause mixed effects reminiscent of both microtubule depolymerizers and stabilizers. Immunofluorescence evaluations showed that each compound initially caused microtubule depolymerization and, surprisingly, with higher concentrations, microtubule bundles were also observed. There were subtle differences in the propensity to cause these competing effects among the compounds with a continuum of stabilizing and destabilizing effects. Tubulin polymerization experiments confirmed the differential effects and, while each of the compounds increased the initial rate of tubulin polymerization at high concentrations, total tubulin polymer was not enhanced at equilibrium, likely because of the dueling depolymerization effects. Modeling studies predict that the compounds bind to tubulin within the colchicine site and confirm that there are differences in their potential interactions that might underlie their distinct effects on microtubules. Due to their dual properties of microtubule stabilization and destabilization, we propose the name Janus for these compounds after the two-faced Roman god. The identification of synthetically tractable, small molecules that elicit microtubule stabilizing effects is a significant finding with the potential to identify new mechanisms of microtubule stabilization.
Bioorganic & Medicinal Chemistry | 2018
Roheeth Kumar Pavana; Khushbu Shah; Taylor Gentile; Nicholas F. Dybdal-Hargreaves; April L. Risinger; Susan L. Mooberry; Ernest Hamel; Aleem Gangjee
The discovery, synthesis and biological evaluations of a series of nine N5-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported. Novel compounds with microtubule depolymerizing activity were identified. Some of these compounds also circumvent clinically relevant drug resistance mechanisms (expression of P-glycoprotein and βIII tubulin). Compounds 4, 5, and 8-13 were one to two-digit nanomolar (IC50) inhibitors of cancer cells in culture. Contrary to recent reports (Banerjee et al. J. Med. Chem.2018, 61, 1704-1718), the conformation of the most active compounds determined by 1H NMR and molecular modeling are similar to that reported previously and in keeping with recently reported X-ray crystal structures. Compound 11, freely water soluble as the HCl salt, afforded statistically significant inhibition of tumor growth in three xenograft models [MDA-MB-435, MDA-MB-231 and NCI/ADR-RES] compared with controls. Compound 11 did not display indications of animal toxicity and is currently slated for further preclinical development.
Cancer Research | 2017
April L. Risinger; Nicholas F. Dybdal-Hargreaves; Roma Kaul; Allison D. Clark; Susan L. Mooberry
Microtubule targeting agents (MTAs) are highly effective anticancer drugs. While these drugs were traditionally classified as antimitotics, compelling evidence suggests that the ability of MTAs to interrupt microtubule-dependent trafficking and signaling in interphase cells contributes to their anticancer efficacies. Previous studies of the interphase effects of MTAs on oncogenic signaling pathways have led to an important reevaluation of their mechanisms of anticancer actions. These effects have been primarily reported in cells that have been treated with MTAs for extended periods of time. However, MTAs rapidly alter microtubule dynamics which results, within a few hours, in global changes to gene expression and cellular signaling. We propose that evaluating the effects of MTAs on oncogenic pathways at times and concentrations that are associated with early microtubule disruption will allow analysis of the initiating events that link the direct action of MTAs on microtubule structure and dynamics to effects on interphase signaling that contribute to anticancer efficacy. The concentrations and treatment times that were optimal for the study of clinically used MTAs on cellular trafficking and signaling events were first determined. Our experimental paradigm of a 2 h treatment of breast cancer cells with clinically relevant concentrations of MTAs eliminated contributions due to mitotic accumulation and changes in gene expression associated with longer treatments. While all MTAs disrupt microtubule dynamics, the differences among MTAs in their rapid downstream effects on cellular signaling have not been systematically evaluated. A goal of this project was to identify differences in the effects of diverse MTAs on interphase signaling pathways that may underlie their differential efficacy in patient populations. This short term treatment paradigm led to the identification of profound differences among MTAs in their ability to disrupt Src-dependent E-cadherin re-localization, canonical and non-canonical TGF-β signaling, and β-catenin localization. These findings demonstrate the ability of diverse MTAs to rapidly impact interphase oncogenic signaling and trafficking pathways. This experimental design sets forth a method to evaluate the initial effects of diverse MTAs to gain critical insight into their differential abilities to inhibit key oncogenic signaling pathways. These types of studies might, in the future, help facilitate the rational selection of specific MTAs for patients depending on tumor characteristics. Funding for this work was provided by Eisai Inc. Citation Format: April L. Risinger, Nicholas F. Dybdal-Hargreaves, Roma Kaul, Allison D. Clark, Susan L. Mooberry. Establishing an experimental paradigm to study the interphase effects of microtubule targeting agents [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5115. doi:10.1158/1538-7445.AM2017-5115
Collaboration
Dive into the Nicholas F. Dybdal-Hargreaves's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs