Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas G. Nickols is active.

Publication


Featured researches published by Nicholas G. Nickols.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide

Nicholas G. Nickols; Peter B. Dervan

Androgen receptor (AR) is essential for the growth and progression of prostate cancer in both hormone-sensitive and hormone-refractory disease. A DNA-binding polyamide that targets the consensus androgen response element binds the prostate-specific antigen (PSA) promoter androgen response element, inhibits androgen-induced expression of PSA and several other AR-regulated genes in cultured prostate cancer cells, and reduces AR occupancy at the PSA promoter and enhancer. Down-regulation of PSA by this polyamide was comparable to that produced by the synthetic antiandrogen bicalutamide (Casodex) at the same concentration. Genome-wide expression analysis reveals that a similar number of transcripts are affected by treatment with the polyamide and with bicalutamide. Direct inhibition of the AR-DNA interface by sequence-specific DNA binding small molecules could offer an alternative approach to antagonizing AR activity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Nuclear localization of pyrrole–imidazole polyamide–fluorescein conjugates in cell culture

Timothy P. Best; Benjamin S. Edelson; Nicholas G. Nickols; Peter B. Dervan

A series of hairpin pyrrole–imidazole polyamide–fluorescein conjugates were synthesized and assayed for cellular localization. Thirteen cell lines, representing 11 human cancers, one human transformed kidney cell line, and one murine leukemia cell line, were treated with 5 μM polyamide–fluorescein conjugates for 10–14 h, then imaged by confocal laser scanning microscopy. A conjugate containing a β-alanine residue at the C terminus of the polyamide moiety showed no nuclear localization, whereas an analogous compound lacking the β-alanine residue was strongly localized in the nuclei of all cell lines tested. The localization profiles of several other conjugates suggest that pyrrole–imidazole sequence and content, dye choice and position, linker composition, and molecular weight are determinants of nuclear localization. The attachment of fluorescein to the C terminus of a hairpin polyamide results in an ≈10-fold reduction in DNA-binding affinity, with no loss of binding specificity with reference to mismatch binding sites.


Nucleic Acids Research | 2007

Improved nuclear localization of DNA-binding polyamides

Nicholas G. Nickols; Claire S. Jacobs; Michelle E. Farkas; Peter B. Dervan

Regulation of endogenous genes by DNA-binding polyamides requires effective nuclear localization. Previous work employing confocal microscopy to study uptake of fluorophore-labeled polyamides has demonstrated the difficulty of predicting a priori the nuclear uptake of a given polyamide. The data suggest that dye identity influences uptake sufficiently such that a dye-conjugate cannot be used as a proxy for unlabeled analogs. Polyamides capable of nuclear localization unaided by fluorescent dyes are desirable due to size and other limitations of fluorophores. Recently, a polyamide-fluorescein conjugate targeted to the hypoxia response element (HRE) was found to inhibit vascular endothelial growth factor (VEGF) expression in cultured HeLa cells. The current study uses inhibition of VEGF expression as a biological read-out for effective nuclear localization of HRE-targeted polyamides. We synthesized a focused library of non-fluorescent, HRE-targeted polyamides in which the C-terminus ‘tail’ has been systematically varied. Members of this library bind the HRE with affinities comparable or superior to that of the fluorescein-labeled analog. Although most library members demonstrate modest or no biological activity, two non-fluorescent polyamides are reported with activity rivaling that of the previously reported fluorescein-labeled polyamide. We also show evidence that promoter occupancy by HIF-1, the transcription factor that binds the HRE, is inhibited by HRE-targeted polyamides.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Antitumor activity of a pyrrole-imidazole polyamide

Fei Yang; Nicholas G. Nickols; Benjamin C. Li; Georgi K. Marinov; Jonathan W. Said; Peter B. Dervan

Many cancer therapeutics target DNA and exert cytotoxicity through the induction of DNA damage and inhibition of transcription. We report that a DNA minor groove binding hairpin pyrrole-imidazole (Py-Im) polyamide interferes with RNA polymerase II (RNAP2) activity in cell culture. Polyamide treatment activates p53 signaling in LNCaP prostate cancer cells without detectable DNA damage. Genome-wide mapping of RNAP2 binding shows reduction of occupancy, preferentially at transcription start sites, but occupancy at enhancer sites is unchanged. Polyamide treatment results in a time- and dose-dependent depletion of the RNAP2 large subunit RPB1 that is preventable with proteasome inhibition. This polyamide demonstrates antitumor activity in a prostate tumor xenograft model with limited host toxicity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression

Katy A. Muzikar; Nicholas G. Nickols; Peter B. Dervan

The glucocorticoid receptor (GR) affects the transcription of genes involved in diverse processes, including energy metabolism and the immune response, through DNA-binding dependent and independent mechanisms. The DNA-binding dependent mechanism occurs by direct binding of GR to glucocorticoid response elements (GREs) at regulatory regions of target genes. The DNA-binding independent mechanism involves binding of GR to transcription factors and coactivators that, in turn, contact DNA. A small molecule that competes with GR for binding to GREs could be expected to affect the DNA-dependent pathway selectively by interfering with the protein-DNA interface. We show that a DNA-binding polyamide that targets the consensus GRE sequence binds the glucocorticoid-induced zipper (GILZ) GRE, inhibits expression of GILZ and several other known GR target genes, and reduces GR occupancy at the GILZ promoter. Genome-wide expression analysis of the effects of this polyamide on a set of glucocorticoid-induced and -repressed genes could help to elucidate the mechanism of GR regulation for these genes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide

Jevgenij A. Raskatov; Nicholas G. Nickols; Amanda E. Hargrove; Georgi K. Marinov; Barbara J. Wold; Peter B. Dervan

Gene regulation by DNA binding small molecules could have important therapeutic applications. This study reports the investigation of a DNA-binding pyrrole-imidazole polyamide targeted to bind the DNA sequence 5′-WGGWWW-3′ with reference to its potency in a subcutaneous xenograft tumor model. The molecule is capable of trafficking to the tumor site following subcutaneous injection and modulates transcription of select genes in vivo. An FITC-labeled analogue of this polyamide can be detected in tumor-derived cells by confocal microscopy. RNA deep sequencing (RNA-seq) of tumor tissue allowed the identification of further affected genes, a representative panel of which was interrogated by quantitative reverse transcription-PCR and correlated with cell culture expression levels.


European Urology | 2017

Clinical Outcomes for Patients with Gleason Score 9–10 Prostate Adenocarcinoma Treated With Radiotherapy or Radical Prostatectomy: A Multi-institutional Comparative Analysis

Amar U. Kishan; Talha Shaikh; Pin-Chieh Wang; Robert E. Reiter; Jonathan W. Said; Govind Raghavan; Nicholas G. Nickols; William J. Aronson; Ahmad Sadeghi; Mitchell Kamrava; D.J. Demanes; Michael L. Steinberg; Eric M. Horwitz; Patrick A. Kupelian; Christopher R. King

BACKGROUND The long natural history of prostate cancer (CaP) limits comparisons of efficacy between radical prostatectomy (RP) and external beam radiotherapy (EBRT), since patients treated years ago received treatments considered suboptimal by modern standards (particularly with regards to androgen deprivation therapy [ADT] and radiotherapy dose-escalation]. Gleason score (GS) 9-10 CaP is particularly aggressive, and clinically-relevant endpoints occur early, facilitating meaningful comparisons. OBJECTIVE To compare outcomes of patients with GS 9-10 CaP following EBRT, extremely-dose escalated radiotherapy (as exemplified by EBRT+brachytherapy [EBRT+BT]), and RP. DESIGN, SETTING, PARTICIPANTS Retrospective analysis of 487 patients with biopsy GS 9-10 CaP treated between 2000 and 2013 (230 with EBRT, 87 with EBRT+BT, and 170 with RP). Most radiotherapy patients received ADT and dose-escalated radiotherapy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Kaplan-Meier analysis and multivariate Cox regression estimated and compared 5-yr and 10-yr rates of distant metastasis-free survival, cancer-specific survival (CSS), and overall survival (OS). RESULTS AND LIMITATIONS The median follow-up was 4.6 yr. Local salvage and systemic salvage were performed more frequently in RP patients (49.0% and 30.1%) when compared with either EBRT patients (0.9% and 19.7%) or EBRT+BT patients (1.2% and 16.1%, p<0.0001). Five-yr and 10-yr distant metastasis-free survival rates were significantly higher with EBRT+BT (94.6% and 89.8%) than with EBRT (78.7% and 66.7%, p=0.0005) or RP (79.1% and 61.5%, p<0.0001). The 5-yr and 10-yr CSS and OS rates were similar across all three cohorts. CONCLUSIONS Radiotherapy and RP provide equivalent CSS and OS. Extremely dose-escalated radiotherapy with ADT in particular offers improved systemic control when compared with either EBRT or RP. These data suggest that extremely dose-escalated radiotherapy with ADT might be the optimal upfront treatment for patients with biopsy GS 9-10 CaP. PATIENT SUMMARY While some prostate cancers are slow-growing requiring many years, sometimes decades, of follow-up in order to compare between radiation and surgery, high-risk and very aggressive cancers follow a much shorter time course allowing such comparisons to be made and updated as treatments, especially radiation, rapidly evolve. We showed that radiation-based treatments and surgery, with contemporary standards, offer equivalent survival for patients with very aggressive cancers (defined as Gleason score 9-10). Extremely-dose escalated radiotherapy with short-course androgen deprivation therapy offered the least risk of developing metastases, and equivalent long term survival.


Molecular Cancer Therapeutics | 2013

Activity of a Py–Im Polyamide Targeted to the Estrogen Response Element

Nicholas G. Nickols; Jerzy O. Szablowski; Amanda E. Hargrove; Benjamin C. Li; Jevgenij A. Raskatov; Peter B. Dervan

Pyrrole-imidazole (Py–Im) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen receptor alpha (ERα) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (ERE) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar Py–Im polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2)–induced transcription and cytotoxicity in ERα positive, E2-stimulated T47DKBluc cells, which express luciferase under ERα control. The most active polyamide targeted the sequence 5′-WGGWCW-3′ (W = A or T), which is the canonical ERE half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2 but had much less effect on the majority of E2-induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity. Mol Cancer Ther; 12(5); 675–84. ©2013 AACR.


Cancer Chemotherapy and Pharmacology | 2012

Single-dose pharmacokinetic and toxicity analysis of pyrrole-imidazole polyamides in mice.

Timothy W. Synold; Bixin Xi; Jun Wu; Yun Yen; Benjamin C. Li; Fei Yang; John W. Phillips; Nicholas G. Nickols; Peter B. Dervan

PurposePyrrole–imidazole (Py-Im) polyamides are programmable, sequence-specific DNA minor groove–binding ligands. Previous work in cell culture has shown that various polyamides can be used to modulate the transcriptional programs of oncogenic transcription factors. In this study, two hairpin polyamides with demonstrated activity against androgen receptor signaling in cell culture were administered to mice to characterize their pharmacokinetic properties.MethodsPy-Im polyamides were administered intravenously by tail vein injection. Plasma, urine, and fecal samples were collected over a 24-h period. Liver, kidney, and lung samples were collected postmortem. Concentrations of the administered polyamide in the plasma, excretion, and tissue samples were measured using LC/MS/MS. The biodistribution data were analyzed by both non-compartmental and compartmental pharmacokinetic models. Animal toxicity experiments were also performed by monitoring weight loss after a single subcutaneous (SC) injection of either polyamide.ResultsThe biodistribution profiles of both compounds exhibited rapid localization to the liver, kidneys, and lungs upon injection. Plasma distribution of the two compounds showed distinct differences in the rate of clearance, the volume of distribution, and the AUCs. These two compounds also have markedly different toxicities after SC injection in mice.ConclusionsThe variations in pharmacokinetics and toxicity in vivo stem from a minor chemical modification that is also correlated with differing potency in cell culture. The results obtained in this study could provide a structural basis for further improvement of polyamide activity both in cell culture and in animal models.


JAMA | 2018

Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer

Amar U. Kishan; Ryan Cook; Jay P. Ciezki; Ashley E. Ross; Mark Pomerantz; Paul L. Nguyen; Talha Shaikh; Phuoc T. Tran; Kiri A. Sandler; Richard G. Stock; Gregory S. Merrick; D. Jeffrey Demanes; Daniel E. Spratt; Eyad Abu-Isa; Trude Baastad Wedde; Wolfgang Lilleby; Daniel J. Krauss; Grace Shaw; Ridwan Alam; C.A. Reddy; Andrew J. Stephenson; Eric A. Klein; Danny Y. Song; Jeffrey J. Tosoian; John V. Hegde; Sun Mi Yoo; Ryan Fiano; Anthony V. D’Amico; Nicholas G. Nickols; William J. Aronson

Importance The optimal treatment for Gleason score 9-10 prostate cancer is unknown. Objective To compare clinical outcomes of patients with Gleason score 9-10 prostate cancer after definitive treatment. Design, Setting, and Participants Retrospective cohort study in 12 tertiary centers (11 in the United States, 1 in Norway), with 1809 patients treated between 2000 and 2013. Exposures Radical prostatectomy (RP), external beam radiotherapy (EBRT) with androgen deprivation therapy, or EBRT plus brachytherapy boost (EBRT+BT) with androgen deprivation therapy. Main Outcomes and Measures The primary outcome was prostate cancer–specific mortality; distant metastasis-free survival and overall survival were secondary outcomes. Results Of 1809 men, 639 underwent RP, 734 EBRT, and 436 EBRT+BT. Median ages were 61, 67.7, and 67.5 years; median follow-up was 4.2, 5.1, and 6.3 years, respectively. By 10 years, 91 RP, 186 EBRT, and 90 EBRT+BT patients had died. Adjusted 5-year prostate cancer–specific mortality rates were RP, 12% (95% CI, 8%-17%); EBRT, 13% (95% CI, 8%-19%); and EBRT+BT, 3% (95% CI, 1%-5%). EBRT+BT was associated with significantly lower prostate cancer–specific mortality than either RP or EBRT (cause-specific HRs of 0.38 [95% CI, 0.21-0.68] and 0.41 [95% CI, 0.24-0.71]). Adjusted 5-year incidence rates of distant metastasis were RP, 24% (95% CI, 19%-30%); EBRT, 24% (95% CI, 20%-28%); and EBRT+BT, 8% (95% CI, 5%-11%). EBRT+BT was associated with a significantly lower rate of distant metastasis (propensity-score-adjusted cause-specific HRs of 0.27 [95% CI, 0.17-0.43] for RP and 0.30 [95% CI, 0.19-0.47] for EBRT). Adjusted 7.5-year all-cause mortality rates were RP, 17% (95% CI, 11%-23%); EBRT, 18% (95% CI, 14%-24%); and EBRT+BT, 10% (95% CI, 7%-13%). Within the first 7.5 years of follow-up, EBRT+BT was associated with significantly lower all-cause mortality (cause-specific HRs of 0.66 [95% CI, 0.46-0.96] for RP and 0.61 [95% CI, 0.45-0.84] for EBRT). After the first 7.5 years, the corresponding HRs were 1.16 (95% CI, 0.70-1.92) and 0.87 (95% CI, 0.57-1.32). No significant differences in prostate cancer–specific mortality, distant metastasis, or all-cause mortality (⩽7.5 and >7.5 years) were found between men treated with EBRT or RP (cause-specific HRs of 0.92 [95% CI, 0.67-1.26], 0.90 [95% CI, 0.70-1.14], 1.07 [95% CI, 0.80-1.44], and 1.34 [95% CI, 0.85-2.11]). Conclusions and Relevance Among patients with Gleason score 9-10 prostate cancer, treatment with EBRT+BT with androgen deprivation therapy was associated with significantly better prostate cancer–specific mortality and longer time to distant metastasis compared with EBRT with androgen deprivation therapy or with RP.

Collaboration


Dive into the Nicholas G. Nickols's collaboration.

Top Co-Authors

Avatar

Peter B. Dervan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amar U. Kishan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Yang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin C. Li

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John V. Hegde

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge