Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Greatrex is active.

Publication


Featured researches published by Nicholas Greatrex.


IEEE Transactions on Biomedical Engineering | 2010

Axial Magnetic Bearing Development for the BiVACOR Rotary BiVAD/TAH

Nicholas Greatrex; Daniel Timms; Nobuyuki Kurita; Edward Palmer; Toru Masuzawa

A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of the magnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of ±0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.


Journal of Simulation | 2010

Simulation and Enhancement of a Cardiovascular Device Test Rig

Shaun D. Gregory; Nicholas Greatrex; Daniel Timms; Nicholas Gaddum; Mark J. Pearcy; John F. Fraser

Cardiovascular assist devices are tested in mock circulation loops (MCLs) prior to animal and clinical testing. These MCLs rely on characteristics such as pneumatic parameters to create pressure and flow, and pipe dimensions to replicate the resistance, compliance and fluid inertia of the natural cardiovascular system. A mathematical simulation was developed in SIMULINK to simulate an existing MCL. Model validation was achieved by applying the physical MCL characteristics to the simulation and comparing the resulting pressure traces. These characteristics were subsequently altered to improve and thus predict the performance of a more accurate physical system. The simulation was successful in simulating the physical MCL, and proved to be a useful tool in the development of improved cardiovascular device test rigs.


Artificial Organs | 2011

Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices.

Daniel Timms; Einar Gude; Nicholas Gaddum; Einly Lim; Nicholas Greatrex; Kai Wong; Ulrich Steinseifer; Nigel H. Lovell; John F. Fraser; Arnt E. Fiane

The absence of an effective, easily implantable right ventricular assist device (RVAD) significantly diminishes long-term treatment options for patients with biventricular heart failure. The implantation of a second rotary left ventricular assist device (LVAD) for right heart support is therefore being considered; however, this approach exhibits technical challenges when adapting current devices to produce the lower pressures required of the pulmonary circulation. Hemodynamic adaptation may be achieved by either reducing the rotational speed of the right pump impeller or reducing the diameter of the right outflow cannula by the placement of a restricting band; however, the optimal value and influence of changes to each parameter are not well understood. Hemodynamics were therefore investigated using different banding diameters of the right outflow cannula (3-6.5 mm) and pump speeds (500-4500 rpm), using two identical rotary blood pumps coupled to a pulsatile mock circulation loop. Reducing the speed of the right pump from 4900 rpm (for left ventricle support) to 3500 rpm, or banding the Ø10 mm (area 78.5 mm²) right outflow graft to Ø5.4 mm (22.9 mm²) produced suitable hemodynamics. Pulmonary pressures were most sensitive to banding diameters, especially when RVAD flow exceeded LVAD flow. This occurred between Ø5.3 and Ø6.5 mm (22.05-38.5 mm²) and speeds between 3200 and 4400 rpm, with the flow imbalance potentially leading to pulmonary congestion. Total flow was not affected by banding diameters and speeds below this range, and only increased slightly at higher values. Both right outflow banding or right pump speed reduction were found to be effective techniques to allow a rotary LVAD to be used directly for right heart support. However, the observed sensitivity to diameter and speed indicate that challenges may be presented when setting appropriate values for each patient, and control over these parameters is desirable.


Artificial Organs | 2014

Effect of Inflow Cannula Tip Design on Potential Parameters of Blood Compatibility and Thrombosis

Kai Chun Wong; Martin Büsen; Carrie Benzinger; René Gäng; Mirko Bezema; Nicholas Greatrex; Thomas Schmitz-Rode; Ulrich Steinseifer

During ventricular assist device support, a cannula acts as a bridge between the native cardiovascular system and a foreign mechanical device. Cannula tip design strongly affects the function of the cannula and its potential for blood trauma. In this study, the flow fields of five different tip geometries within the ventricle were evaluated using stereo particle image velocimetry. Inflow cannulae with conventional tip geometries (blunt, blunt with four side ports, beveled with three side ports, and cage) and a custom-designed crown tip were interposed between a mixed-flow rotary blood pump and a compressible, translucent silicone left ventricle. The contractile function of the failing ventricle and hemodynamics were reproduced in a mock circulation loop. The rotary blood pump was interfaced with the ventricle and aorta and used to fully support the failing ventricle. Among these five tip geometries, high-shear volume ( γ ˙ ≥ 2778 / s , potential parameter of platelet activation) was found to be the greatest in the blunt tip. The cage tip was observed to have the highest low-shear volume and recirculation volume ( γ ˙ ≤ 100 / s and Vz  > 0, respectively; potential parameters of thrombus formation). The crown tip, together with conventional tip geometries with side ports (blunt with four side ports and beveled with three side ports) showed no significant difference in either high-shear volume or low-shear volume. However, recirculation volume was reduced significantly in the crown tip. Despite limited generalizability to clinical situations, these transient-state measurements supported the potential mitigation of complications by changing the design of conventional cannula tip geometries.


Artificial Organs | 2016

Rapid speed modulation of a totary yotal artificial heart impeller

Matthias Kleinheyer; Daniel Timms; Geoffrey Tansley; Frank Nestler; Nicholas Greatrex; O. Howard Frazier; William E. Cohn

Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility.


International Journal of Artificial Organs | 2014

Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips.

Kai Chun Wong; Martin Büsen; Carrie Benzinger; René Gäng; Mirko Bezema; Nicholas Greatrex; Thomas Schmitz-Rode; Ulrich Steinseifer

Purpose Rotary Blood Pump (RBP) pulsatile strategies relative to the native cardiac cycle have been widely studied because of their benefits to hemodynamics. However, the effects that inducing pulses has on the blood compatibility of ventricular assist device (VAD) support have not yet been understood. Inflow cannulae have been found to be associated with thrombosis under conventional constant speed support of RBPs. To prevent further risks to blood compatibility, it is necessary to understand the relationship between cannula tip design and the induced pulsatility. The purpose of this study was to evaluate the flow field of 5 different tip geometries under RBP pulsatile support using stereo-particle image velocimetry (PIV). Methods Inflow cannulae with conventional tip geometries (blunt, blunt with 4 side ports, beveled with 3 side ports, and cage) and a custom designed crown tip were studied. All cannulae were interposed between a mixed-flow RBP and a silicone left ventricle. The contractile function and hemodynamics were reproduced in a mock circulation loop (MCL). The RBP was configured to induce synchronous and counter-synchronous pulses relative to cardiac cycles while supporting the failing ventricle. Results Between both pulsing strategies, low shear volume ( γ ˙ ≤ 100 / S , potential parameter of thrombus formation) showed no significant difference. However, counter-synchronous pulsatile mode induced less increase of both high shear volume ( γ ˙ ≥ 2778 / S , potential parameter of platelet activation) and recirculation volume (Vz>0, potential parameter of thrombus formation). Conclusions Although the clinical relationship cannot be inferred from this measurement, when considering the inflow tips only, a necessary trade-off should be made between adverse effects on blood compatibility and benefits for hemodynamics during RBP pulsatile mode.


Artificial Organs | 2011

Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two Rotary LVADs

Daniel Timms; Einar Gude; Nicholas Gaddum; Einly Lim; Nicholas Greatrex; Kai Wong; Ulrich Steinseifer; Nigel H. Lovell; John F. Fraser; Arnt E. Fiane

The absence of an effective, easily implantable right ventricular assist device (RVAD) significantly diminishes long-term treatment options for patients with biventricular heart failure. The implantation of a second rotary left ventricular assist device (LVAD) for right heart support is therefore being considered; however, this approach exhibits technical challenges when adapting current devices to produce the lower pressures required of the pulmonary circulation. Hemodynamic adaptation may be achieved by either reducing the rotational speed of the right pump impeller or reducing the diameter of the right outflow cannula by the placement of a restricting band; however, the optimal value and influence of changes to each parameter are not well understood. Hemodynamics were therefore investigated using different banding diameters of the right outflow cannula (3-6.5 mm) and pump speeds (500-4500 rpm), using two identical rotary blood pumps coupled to a pulsatile mock circulation loop. Reducing the speed of the right pump from 4900 rpm (for left ventricle support) to 3500 rpm, or banding the Ø10 mm (area 78.5 mm²) right outflow graft to Ø5.4 mm (22.9 mm²) produced suitable hemodynamics. Pulmonary pressures were most sensitive to banding diameters, especially when RVAD flow exceeded LVAD flow. This occurred between Ø5.3 and Ø6.5 mm (22.05-38.5 mm²) and speeds between 3200 and 4400 rpm, with the flow imbalance potentially leading to pulmonary congestion. Total flow was not affected by banding diameters and speeds below this range, and only increased slightly at higher values. Both right outflow banding or right pump speed reduction were found to be effective techniques to allow a rotary LVAD to be used directly for right heart support. However, the observed sensitivity to diameter and speed indicate that challenges may be presented when setting appropriate values for each patient, and control over these parameters is desirable.


Artificial Organs | 2011

Assessment of Right Pump Outflow Banding and Speed Changes on Pulmonary Hemodynamics During Biventricular Support With Two Rotary Left Ventricular Assist Devices: THOUGHTS AND PROGRESS

Daniel Timms; Einar Gude; Nicholas Gaddum; Einly Lim; Nicholas Greatrex; Kai Wong; Ulrich Steinseifer; Nigel H. Lovell; John F. Fraser; Arnt E. Fiane

The absence of an effective, easily implantable right ventricular assist device (RVAD) significantly diminishes long-term treatment options for patients with biventricular heart failure. The implantation of a second rotary left ventricular assist device (LVAD) for right heart support is therefore being considered; however, this approach exhibits technical challenges when adapting current devices to produce the lower pressures required of the pulmonary circulation. Hemodynamic adaptation may be achieved by either reducing the rotational speed of the right pump impeller or reducing the diameter of the right outflow cannula by the placement of a restricting band; however, the optimal value and influence of changes to each parameter are not well understood. Hemodynamics were therefore investigated using different banding diameters of the right outflow cannula (3-6.5 mm) and pump speeds (500-4500 rpm), using two identical rotary blood pumps coupled to a pulsatile mock circulation loop. Reducing the speed of the right pump from 4900 rpm (for left ventricle support) to 3500 rpm, or banding the Ø10 mm (area 78.5 mm²) right outflow graft to Ø5.4 mm (22.9 mm²) produced suitable hemodynamics. Pulmonary pressures were most sensitive to banding diameters, especially when RVAD flow exceeded LVAD flow. This occurred between Ø5.3 and Ø6.5 mm (22.05-38.5 mm²) and speeds between 3200 and 4400 rpm, with the flow imbalance potentially leading to pulmonary congestion. Total flow was not affected by banding diameters and speeds below this range, and only increased slightly at higher values. Both right outflow banding or right pump speed reduction were found to be effective techniques to allow a rotary LVAD to be used directly for right heart support. However, the observed sensitivity to diameter and speed indicate that challenges may be presented when setting appropriate values for each patient, and control over these parameters is desirable.


Archive | 2012

Method of controlling the speed of an ventricular assist device (vad) and ventricular assist device

Nicholas Greatrex; Ulrich Steinseifer


Archive | 2012

VENTRICULAR ASSIST DEVICE AND METHOD OF CONTROLLING SAME

Nicholas Greatrex; Ulrich Steinseifer

Collaboration


Dive into the Nicholas Greatrex's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Fraser

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Wong

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Pearcy

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nigel H. Lovell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge