Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Hatzirodos is active.

Publication


Featured researches published by Nicholas Hatzirodos.


PLOS ONE | 2013

A New Model of Development of the Mammalian Ovary and Follicles

Katja Hummitzsch; Helen F. Irving-Rodgers; Nicholas Hatzirodos; Wendy Bonner; Laetitia Sabatier; Dieter P. Reinhardt; Yoshikazu Sado; Yoshifumi Ninomiya; Dagmar Wilhelm; Raymond J. Rodgers

Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.


BMC Genomics | 2014

Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia.

Nicholas Hatzirodos; Katja Hummitzsch; Irving-Rodgers Hf; Margaret L Harland; Stephanie Morris; Raymond J. Rodgers

BackgroundThe major function of the ovary is to produce oocytes for fertilisation. Oocytes mature in follicles surrounded by nurturing granulosa cells and all are enclosed by a basal lamina. During growth, granulosa cells replicate and a large fluid-filled cavity (the antrum) develops in the centre. Only follicles that have enlarged to over 10 mm can ovulate in cows. In mammals, the number of primordial follicles far exceeds the numbers that ever ovulate and atresia or regression of follicles is a mechanism to regulate the number of oocytes ovulated and to contribute to the timing of ovulation. To better understand the molecular basis of follicular atresia, we undertook transcriptome profiling of granulosa cells from healthy (n = 10) and atretic (n = 5) bovine follicles at early antral stages (< 5 mm).ResultsPrincipal Component Analysis (PCA) and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. These analyses and size-frequency plots of coefficients of variation of signal intensities revealed that the healthy follicles were more heterogeneous. Examining the differentially-expressed genes the most significantly affected functions in atretic follicles were cell death, organ development, tissue development and embryonic development. The overall processes influenced by transcription factor gene TP53 were predicted to be activated, whereas those of MYC were inhibited on the basis of known interactions with the genes in our dataset. The top ranked canonical pathway contained signalling molecules common to various inflammatory/fibrotic pathways such as the transforming growth factor-β and tumour necrosis factor-α pathways. The two most significant networks also reflect this pattern of tissue remodelling/fibrosis gene expression. These networks also contain molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor-β signalling and were up regulated.ConclusionsSmall healthy antral follicles, which have a number of growth outcomes, exhibit greater variability in gene expression, particularly in genes associated with cell division and other growth-related functions. Atresia, on the other hand, not only involves cell death but clearly is an active process similar to wound healing.


The FASEB Journal | 2011

Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome

Nicholas Hatzirodos; Rosemary A. L. Bayne; Helen F. Irving-Rodgers; Katja Hummitzsch; Laetitia Sabatier; Sam W. Lee; Wendy Bonner; Mark A. Gibson; William E. Rainey; Bruce R. Carr; Helen D. Mason; Dieter P. Reinhardt; Richard A. Anderson; Raymond J. Rodgers

Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF‐β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF‐β bioactivity in tissues by binding latent TGF‐β binding proteins. We therefore examined expression of fibrillins 1‐3, latent TGF‐β binding proteins 1‐4, and TGF‐β 1‐3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF‐β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving‐Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF‐β activity in the fetal ovary to polycystic ovary syndrome. FASEB J. 25, 2256‐2265 (2011). www.fasebj.org


Molecular Human Reproduction | 2009

Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries

Mark J. Prodoehl; Nicholas Hatzirodos; Helen F. Irving-Rodgers; Zhen Zhen Zhao; Jodie N. Painter; Theresa E. Hickey; Mark A. Gibson; William E. Rainey; Bruce R. Carr; Helen D. Mason; Robert J. Norman; Grant W. Montgomery; Raymond J. Rodgers

Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.


PLOS ONE | 2014

Transcriptome Profiling of the Theca Interna from Bovine Ovarian Follicles during Atresia

Nicholas Hatzirodos; Helen F. Irving-Rodgers; Katja Hummitzsch; Raymond J. Rodgers

The theca interna is a specialized stromal layer that envelops each growing ovarian follicle. It contains capillaries, fibroblasts, immune cells and the steroidogenic cells that synthesize androgens for conversion to estradiol by the neighboring granulosa cells. During reproductive life only a small number of follicles will grow to a sufficient size to ovulate, whereas the majority of follicles will undergo regression/atresia and phagocytosis by macrophages. To identify genes which are differentially regulated in the theca interna during follicular atresia, we undertook transcriptome profiling of the theca interna from healthy (n = 10) and antral atretic (n = 5) bovine follicles at early antral stages (<5 mm). Principal Component Analyses and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. A total of 543 probe sets were differentially expressed between the atretic and healthy theca interna. Further analyses of these genes by Ingenuity Pathway Analysis and Gene Ontology Enrichment Analysis Toolkit software found most of the genes being expressed were related to cytokines, hormones and receptors as well as the cell cycle and DNA replication. Cell cycle genes which encode components of the replicating chromosome complex and mitotic spindle were down-regulated in atretic theca interna, whereas stress response and inflammation-related genes such as TP53, IKBKB and TGFB1 were up-regulated. In addition to cell cycle regulators, upstream regulators that were predicted to be inhibited included Retinoblastoma 1, E2 transcription factor 1, and hepatocyte growth factor. Our study suggests that during antral atresia of small follicles in the theca interna, arrest of cell cycle and DNA replication occurs rather than up- regulation of apoptosis-associated genes as occurs in granulosa cells.


PLOS ONE | 2014

Transcriptome Profiling of the Theca Interna in Transition from Small to Large Antral Ovarian Follicles

Nicholas Hatzirodos; Katja Hummitzsch; Helen F. Irving-Rodgers; Raymond J. Rodgers

The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3–5 mm, n = 10) and large (9–12 mm, n = 5) healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor β signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth phase examined.


BMC Genomics | 2014

The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

Claire Glister; Nicholas Hatzirodos; Katja Hummitzsch; Philip G. Knight; Raymond J. Rodgers

BackgroundOocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses.ResultsStatistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β.ConclusionsIn vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.


PLOS ONE | 2015

Transcriptome Comparisons Identify New Cell Markers for Theca Interna and Granulosa Cells from Small and Large Antral Ovarian Follicles

Nicholas Hatzirodos; Katja Hummitzsch; Irving-Rodgers Hf; Raymond J. Rodgers

In studies using isolated ovarian granulosa and thecal cells it is important to assess the degree of cross contamination. Marker genes commonly used for granulosa cells include FSHR, CYP19A1 and AMH while CYP17A1 and INSL3 are used for thecal cells. To increase the number of marker genes available we compared expression microarray data from isolated theca interna with that from granulosa cells of bovine small (n = 10 for both theca and granulosa cells; 3-5 mm) and large (n = 4 for both theca and granulosa cells, > 9 mm) antral follicles. Validation was conducted by qRT-PCR analyses. Known markers such as CYP19A1, FSHR and NR5A2 and another 11 genes (LOC404103, MGARP, GLDC, CHST8, CSN2, GPX3, SLC35G1, CA8, CLGN, FAM78A, SLC16A3) were common to the lists of the 50 most up regulated genes in granulosa cells from both follicle sizes. The expression in theca interna was more consistent than in granulosa cells between the two follicle sizes. Many genes up regulated in theca interna were common to both sizes of follicles (MGP, DCN, ASPN, ALDH1A1, COL1A2, FN1, COL3A1, OGN, APOD, COL5A2, IGF2, NID1, LHFP, ACTA2, DUSP12, ACTG2, SPARCL1, FILIP1L, EGFLAM, ADAMDEC1, HPGD, COL12A1, FBLN5, RAMP2, COL15A1, PLK2, COL6A3, LOXL1, RARRES1, FLI1, LAMA2). Many of these were stromal extracellular matrix genes. MGARP, GLDC, CHST8, GPX3 were identified as new potential markers for granulosa cells, while FBLN5, OGN, RAMP2 were significantly elevated in the theca interna.


Matrix Biology | 2012

Glycomic analyses of ovarian follicles during development and atresia.

Nicholas Hatzirodos; Julie Nigro; Helen F. Irving-Rodgers; Aditya V. Vashi; Katja Hummitzsch; Bruce Caterson; Thomas Sullivan; Raymond J. Rodgers

To examine the detailed composition of glycosaminoglycans during bovine ovarian follicular development and atresia, the specialized stromal theca layers were separated from the stratified epithelial granulosa cells of healthy (n = 6) and atretic (n = 6) follicles in each of three size ranges: small (3–5 mm), medium (6-9 mm) and large (10 mm or more) (n = 29 animals). Fluorophore-assisted carbohydrate electrophoresis analyses (on a per cell basis) and immunohistochemistry (n = 14) were undertaken. We identified the major disaccharides in thecal layers and the membrana granulosa as chondroitin sulfate-derived ∆uronic acid with 4-sulfated N-acetylgalactosamine and ∆uronic acid with 6-sulfated N-acetylgalactosamine and the heparan sulfate-derived Δuronic acid with N-acetlyglucosamine, with elevated levels in the thecal layers. Increasing follicle size and atresia was associated with increased levels of some disaccharides. We concluded that versican contains 4-sulfated N-acetylgalactosamine and it is the predominant 4-sulfated N-acetylgalactosamine proteoglycan in antral follicles. At least one other non- or 6-sulfated N-acetylgalactosamine proteoglycan(s), which is not decorin or an inter-α-trypsin inhibitor family member, is present in bovine antral follicles and associated with hitherto unknown groups of cells around some larger blood vessels. These areas stained positively for chondroitin/dermatan sulfate epitopes [antibodies 7D4, 3C5, and 4C3], similar to stem cell niches observed in other tissues. The sulfation pattern of heparan sulfate glycosaminoglycans appears uniform across follicles of different sizes and in healthy and atretic follicles. The heparan sulfate products detected in the follicles are likely to be associated with perlecan, collagen XVIII or betaglycan.


Molecular and Cellular Endocrinology | 2010

Differential expression of focimatrix and steroidogenic enzymes before size deviation during waves of follicular development in bovine ovarian follicles.

Nadine Matti; Helen F. Irving-Rodgers; Nicholas Hatzirodos; Thomas Sullivan; Raymond J. Rodgers

During the growth of bovine follicles, one emerges from a wave as the largest and dominant follicle. What regulates dominance is not known but candidates include oestradiol, transforming growth factor beta beta1 (TGFB1), and recently CYP11AI (cholesterol side-chain cleavage) and focal intra-epithelial matrix (focimatrix). To examine this, pairs of bovine ovaries with 2 or more follicles of equal size (>5mm) and hence in a wave before deviation, were collected at an abattoir (6.7+/-SEM 0.1mm diameter; n=14 animals, 35 follicles in total). These follicles were dissected and follicular fluid collected to measure progesterone and oestradiol concentrations. A portion of the follicle wall was processed for histological classification of health or atresia and granulosa cells were harvested for quantitative RT-PCR of focimatrix components [COL4A1 (collagen type IV alpha1), LAMB2 (laminin beta2) and HSPG2 (perlecan)], steroidogenic enzymes [CYP11A1 and CYP19A1] and TGFB1. For statistical analyses follicles within each animal were grouped into either the highest (oestradiol, CYP11A1) or lowest (TGFB1) expression (n=14) for comparison with the remaining follicles (n=21). When grouped on oestradiol no other parameters differed significantly, and when grouped on TGFB1 some parameters were different however the levels were also lower, and not higher as expected. When grouped on CYP11A1 other parameters were significantly elevated in the high CYP11A1 group (COL4A1P<0.05; LAMB2P<0.01; HSPG2P<0.01 and CYP19A1P<0.001). This suggests that steroidogenesis and focimatrix might be important in a follicle attaining dominance.

Collaboration


Dive into the Nicholas Hatzirodos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Lee

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge