Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Hine is active.

Publication


Featured researches published by Nicholas Hine.


Physical Review Letters | 2012

Vanadium Dioxide: A Peierls-Mott Insulator Stable against Disorder

Cedric Weber; David Daniel O’Regan; Nicholas Hine; M. C. Payne; Gabriel Kotliar; Peter B. Littlewood

Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this Letter, we develop and carry out state-of-the-art linear scaling density-functional theory calculations refined with nonlocal dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M(1) phase, and which furthermore survives a moderate degree of disorder.


Science Advances | 2017

Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures

Neil R. Wilson; Paul Nguyen; Kyle Seyler; Pasqual Rivera; Alexander J. Marsden; Zachary P. L. Laker; Gabriel C. Constantinescu; Viktor Kandyba; Alexei Barinov; Nicholas Hine; Xiaodong Xu; David Cobden

Photoemission measurements on exfoliated 2D heterostructures reveal detailed electronic structure and hybridization effects. Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe2/WSe2 heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe2/WSe2 heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures.


Physical Review B | 2011

Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals

Nicholas Hine; Mark T. Robinson; Peter D. Haynes; Chris-Kriton Skylaris; M. C. Payne; Arash A. Mostofi

Linear scaling methods for density-functional theory (DFT) simulations are formulated in terms of localized orbitals in real space, rather than the delocalized eigenstates of conventional approaches. In local-orbital methods, relative to conventional DFT, desirable properties can be lost to some extent, such as the translational invariance of the total energy of a system with respect to small displacements and the smoothness of the potential-energy surface. This has repercussions for calculating accurate ionic forces and geometries. In this work we present results from onetep, our linear scaling method based on localized orbitals in real space. The use of psinc functions for the underlying basis set and on-the-fly optimization of the localized orbitals results in smooth potential-energy surfaces that are consistent with ionic forces calculated using the Hellmann-Feynman theorem. This enables accurate geometry optimization to be performed. Results for surface reconstructions in silicon are presented, along with three example systems demonstrating the performance of a quasi-Newton geometry optimization algorithm: an organic zwitterion, a point defect in an ionic crystal, and a semiconductor nanostructure.


Journal of Chemical Physics | 2011

Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory

Nicholas Hine; Jacek Dziedzic; Peter D. Haynes; Chris-Kriton Skylaris

We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.


PLOS Computational Biology | 2013

Dimensionality of carbon nanomaterials determines the binding and dynamics of amyloidogenic peptides: multiscale theoretical simulations

Nevena Todorova; Adam J. Makarucha; Nicholas Hine; Arash A. Mostofi; Irene Yarovsky

Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimers, Parkinsons and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth.


Nano Letters | 2016

Multipurpose Black-Phosphorus/hBN Heterostructures

Gabriel C. Constantinescu; Nicholas Hine

Black phosphorus (BP) has recently emerged as a promising semiconducting two-dimensional material. However, its viability is threatened by its instability in ambient conditions and by the significant decrease of its band gap in multilayers. We show that one could solve all the aforementioned problems by interfacing BP with hexagonal boron nitride (hBN). To this end, we simulate large, rotated hBN/BP interfaces using linear-scaling density functional theory. We predict that hBN-encapsulation preserves the main electronic properties of the BP monolayer, while hBN spacers can be used to counteract the band gap reduction in stacked BP. Finally, we propose a model for a tunneling field effect transistor (TFET) based on hBN-spaced BP bilayers. Such BP TFETs would sustain both low-power and fast-switching operations, including negative differential resistance behavior with peak-to-valley ratios of the same order of magnitude as those encountered in transition metal dichalcogenide TFETs.


Journal of Chemical Theory and Computation | 2014

Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.

Karl A. Wilkinson; Nicholas Hine; Chris-Kriton Skylaris

We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here.


Journal of Physical Chemistry Letters | 2013

Toward Ab Initio Optical Spectroscopy of the Fenna–Matthews–Olson Complex

Daniel J. Cole; Alex W. Chin; Nicholas Hine; Peter D. Haynes; M. C. Payne

We present progress toward a first-principles parametrization of the Hamiltonian of the Fenna-Matthews-Olson pigment-protein complex, a molecule that has become key to understanding the role of quantum dynamics in photosynthetic exciton energy transfer. To this end, we have performed fully quantum mechanical calculations on each of the seven bacteriochlorophyll pigments that make up the complex, including a significant proportion of their protein environment (more than 2000 atoms), using linear-scaling density functional theory exploiting a recent development for the computation of excited states. Local pigment transition energies and interpigment coupling between optical transitions have been calculated and are in good agreement with the literature consensus. Comparisons between simulated and experimental optical spectra point toward future work that may help to elucidate important design principles in these nanoscale devices.


Nature Communications | 2016

Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

Steven Lukman; Kai Chen; Justin M. Hodgkiss; David H. P. Turban; Nicholas Hine; Shaoqiang Dong; Jishan Wu; Neil C. Greenham; Andrew J. Musser

Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.


Journal of Chemical Physics | 2013

Linear-scaling time-dependent density-functional theory in the linear response formalism

Tim Joachim Zuehlsdorff; Nicholas Hine; James Spencer; N. M. Harrison; D. J. Riley; Peter D. Haynes

We present an implementation of time-dependent density-functional theory (TDDFT) in the linear response formalism enabling the calculation of low energy optical absorption spectra for large molecules and nanostructures. The method avoids any explicit reference to canonical representations of either occupied or virtual Kohn-Sham states and thus achieves linear-scaling computational effort with system size. In contrast to conventional localised orbital formulations, where a single set of localised functions is used to span the occupied and unoccupied state manifold, we make use of two sets of in situ optimised localised orbitals, one for the occupied and one for the unoccupied space. This double representation approach avoids known problems of spanning the space of unoccupied Kohn-Sham states with a minimal set of localised orbitals optimised for the occupied space, while the in situ optimisation procedure allows for efficient calculations with a minimal number of functions. The method is applied to a number of medium sized organic molecules and a good agreement with traditional TDDFT methods is observed. Furthermore, linear scaling of computational cost with system size is demonstrated on (10,0) carbon nanotubes of different lengths.

Collaboration


Dive into the Nicholas Hine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. C. Payne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Tangney

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge