Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Hutzler is active.

Publication


Featured researches published by Nicholas Hutzler.


Science | 2014

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

Jacob Baron; Wesley C. Campbell; David DeMille; John M. Doyle; G. Gabrielse; Y. V. Gurevich; Paul Hess; Nicholas Hutzler; Emil Kirilov; Ivan Kozyryev; Brendon O'Leary; C. D. Panda; Maxwell Parsons; Elizabeth Petrik; B. Spaun; A. C. Vutha; Adam West

Stubbornly Spherical The shape of the electrons charge distribution reflects the degree to which switching the direction of time impacts the basic ingredients of the universe. The Standard Model (SM) of particle physics predicts a very slight asphericity of the charge distribution, whereas SM extensions such as supersymmetry posit bigger and potentially measurable, but still tiny, deviations from a perfect sphere. Polar molecules have been identified as ideal settings for measuring this asymmetry, which should be reflected in a finite electric dipole moment (EDM) because of the extremely large effective electric fields that act on an electron inside such molecules. Using electron spin precession in the molecule ThO, Baron et al. (p. 269, published online 19 December; see the cover; see the Perspective by Brown) measured the EDM of the electron as consistent with zero. This excludes some of the extensions to the SM and sets a bound to the search for a nonzero EDM in other facilities, such as the Large Hadron Collider. Spin precession measurements in the polar molecule thorium monoxide indicate a nearly spherical charge distribution of an electron. [Also see Perspective by Brown] The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), de, in the range of 10−27 to 10−30 e·cm. The EDM is an asymmetric charge distribution along the electron spin (S→) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured de = (–2.1 ± 3.7stat ± 2.5syst) × 10−29 e·cm. This corresponds to an upper limit of | de | < 8.7 × 10−29 e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.


Chemical Reviews | 2012

The buffer gas beam: an intense, cold, and slow source for atoms and molecules.

Nicholas Hutzler; Hsin-I Lu; John M. Doyle

Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300−600 m s^(−1) in the laboratory frame and, for a large class of species, has insufficient flux (i.e., brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow atoms and molecules (see Figure 1) in the laboratory frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take.


Journal of Physics B | 2010

Search for the electric dipole moment of the electron with thorium monoxide

A. C. Vutha; Wesley C. Campbell; Y. V. Gurevich; Nicholas Hutzler; Maxwell Parsons; David Patterson; Elizabeth Petrik; B. Spaun; John M. Doyle; G. Gabrielse; David DeMille

The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the standard model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable H 3 � 1 state in ThO has important advantages for such an experiment. We argue that the statistical uncertainty of an eEDM measurement could be improved by as much as three orders of magnitude compared to the current experimental limit, in a first-generation apparatus using a cold ThO beam. We describe our measurements of the H state lifetime and the production of ThO molecules in a beam, which provide crucial data for the eEDM sensitivity estimate. ThO also has ideal properties for the rejection of a number of known systematic errors; these properties and their implications are described. (Some figures in this article are in colour only in the electronic version)


Physical Review Letters | 2017

Radio Frequency Magneto-Optical Trapping of CaF with High Density

ïc Anderegg; Benjamin Augenbraun; Eunmi Chae; Boerge Hemmerling; Nicholas Hutzler; Aakash Ravi; Alejandra Collopy; J. Ye; Wolfgang Ketterle; John M. Doyle

We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6}  cm^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20)  μK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.


Physical Chemistry Chemical Physics | 2011

A cryogenic beam of refractory, chemically reactive molecules with expansion cooling

Nicholas Hutzler; Maxwell Parsons; Y. V. Gurevich; Paul Hess; Elizabeth Petrik; B. Spaun; A. C. Vutha; David DeMille; G. Gabrielse; John M. Doyle

Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ∼10(15)-10(16) cm(-3) (Reynolds number ∼1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ∼10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.


New Journal of Physics | 2017

Methods, Analysis, and the Treatment of Systematic Errors for the Electron Electric Dipole Moment Search in Thorium Monoxide

Jacob Baron; Wesley C. Campbell; David DeMille; John M. Doyle; G. Gabrielse; Y. V. Gurevich; P W Hess; Nicholas Hutzler; E. Kirilov; Ivan Kozyryev; B R O’Leary; C. D. Panda; Maxwell Parsons; B. Spaun; Amar C. Vutha; Adam West; Elizabeth West

We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269–272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.


Physical Review A | 2011

Magnetic and Electric Dipole Moments of the \(H\ ^3\Delta_1\) State in ThO

A. C. Vutha; B. Spaun; Y. V. Gurevich; Nicholas Hutzler; Emil Kirilov; John M. Doyle; G. Gabrielse; David DeMille

The metastable H^3 Δ_1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP -violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ_H and the molecule-fixed electric dipole moment D_H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μH=8.5(5)×10^(−3)μ_B displays the predicted cancellation of spin and orbital contributions in a ^3Δ_1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.


New Journal of Physics | 2017

Eliminating light shifts for single atom trapping

Nicholas Hutzler; Lee R. Liu; Yichao Yu; Kang-Kuen Ni

Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We implement a general solution to these limitations by loading, as well as cooling and imaging the atoms with temporally alternating beams, and present an analysis of the role of heating and required cooling for single atom tweezer loading. Because this technique does not depend on any specific spectral properties, it should enable the optical tweezer platform to be extended to nearly any atomic or molecular species that can be laser cooled and optically trapped.


Physical Review Letters | 2017

Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules

Ivan Kozyryev; Nicholas Hutzler

Precision searches for time-reversal symmetry violating interactions in polar molecules are extremely sensitive probes of high energy physics beyond the standard model. To extend the reach of these probes into the PeV regime, long coherence times and large count rates are necessary. Recent advances in laser cooling of polar molecules offer one important tool-optical trapping. However, the types of molecules that have been laser cooled so far do not have the highly desirable combination of features for new physics searches, such as the ability to fully polarize and the existence of internal comagnetometer states. We show that by utilizing the internal degrees of freedom present only in molecules with at least three atoms, these features can be attained simultaneously with molecules that have simple structure and are amenable to laser cooling and trapping.


Science | 2018

Building one molecule from a reservoir of two atoms

Lee R. Liu; J. D. Hood; Yichao Yu; Jinfang Zhang; Nicholas Hutzler; T. Rosenband; Kang-Kuen Ni

Lighting the way to molecules, one by one When chemists run reactions, what they are really doing is mixing up an enormous number of reacting partners and then hoping that they collide productively. It is possible to manipulate atoms more deliberately with a scanning tunneling microscope tip, but the process is then confined to a surface. Liu et al. directly manipulated individual atoms with light to form single molecules in isolation (see the Perspective by Narevicius). They used optical tweezers of two different colors to selectively steer ultracold sodium (Na) and cesium (Cs) atoms together. A subsequent optical excitation formed NaCs. Science, this issue p. 900; see also p. 855 Optical tweezers at distinct wavelengths poise individual sodium and cesium atoms sufficiently close together to form a NaCs molecule. Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

Collaboration


Dive into the Nicholas Hutzler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge