Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Clark is active.

Publication


Featured researches published by Nicholas J. Clark.


International Journal for Parasitology | 2014

A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data.

Nicholas J. Clark; Sonya M. Clegg; Marcos Robalinho Lima

Biogeographic patterns of parasite diversity are useful for determining how host-parasite interactions can influence speciation. However, variation in methodologies and sampling effort can skew diversity estimates. Avian haemosporidians are vector-transmitted blood parasites represented by over 1300 unique genetic lineages spread across over 40 countries. We used a global database of lineage distributions for two avian haemosporidian genera, Plasmodium and Haemoproteus, to test for congruence of diversity among haemosporidians and their avian hosts across 13 geographic regions. We demonstrated that avian haemosporidians exhibit similar diversity patterns to their avian hosts; however, specific patterns differ between genera. Haemoproteus spp. diversity estimates were significantly higher than those of Plasmodium spp. in all areas where the genera co-occurred, apart from the Plasmodium spp.-rich region of South America. The geographic distributions of parasite genera also differed, with Haemoproteus spp. absent from the majority of oceanic regions while Plasmodium spp. were cosmopolitan. These findings suggest fundamental differences in the way avian haemosporidians diverge and colonise new communities. Nevertheless, a review of the literature suggests that accurate estimates of avian haemosporidian diversity patterns are limited by (i) a concentration of sampling towards passerines from Europe and North America, (ii) a frequent failure to include microscopic techniques together with molecular screening and (iii) a paucity of studies investigating distributions across vector hosts.


Journal of Animal Ecology | 2015

Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia

Sophie Olsson-Pons; Nicholas J. Clark; Farah Ishtiaq; Sonya M. Clegg

Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.


Molecular Ecology | 2017

Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity

Nicholas J. Clark; Sonya M. Clegg

The range of hosts a pathogen infects (host specificity) is a key element of disease risk that may be influenced by both shared phylogenetic history and shared ecological attributes of prospective hosts. Phylospecificity indices quantify host specificity in terms of host relatedness, but can fail to capture ecological attributes that increase susceptibility. For instance, similarity in habitat niche may expose phylogenetically unrelated host species to similar pathogen assemblages. Using a recently proposed method that integrates multiple distances, we assess the relative contributions of host phylogenetic and functional distances to pathogen host specificity (functional–phylogenetic host specificity). We apply this index to a data set of avian malaria parasite (Plasmodium and Haemoproteus spp.) infections from Melanesian birds to show that multihost parasites generally use hosts that are closely related, not hosts with similar habitat niches. We also show that host community phylogenetic ß‐diversity (Pßd) predicts parasite Pßd and that individual host species carry phylogenetically clustered Haemoproteus parasite assemblages. Our findings were robust to phylogenetic uncertainty, and suggest that phylogenetic ancestry of both hosts and parasites plays important roles in driving avian malaria host specificity and community assembly. However, restricting host specificity analyses to either recent or historical timescales identified notable exceptions, including a ‘habitat specialist’ parasite that infects a diversity of unrelated host species with similar habitat niches. This work highlights that integrating ecological and phylogenetic distances provides a powerful approach to better understand drivers of pathogen host specificity and community assembly.


Journal of Animal Ecology | 2016

Co‐infections and environmental conditions drive the distributions of blood parasites in wild birds

Nicholas J. Clark; Konstans Wells; Dimitar Dimitrov; Sonya M. Clegg

Experimental work increasingly suggests that non-random pathogen associations can affect the spread or severity of disease. Yet due to difficulties distinguishing and interpreting co-infections, evidence for the presence and directionality of pathogen co-occurrences in wildlife is rudimentary. We provide empirical evidence for pathogen co-occurrences by analysing infection matrices for avian malaria (Haemoproteus and Plasmodium spp.) and parasitic filarial nematodes (microfilariae) in wild birds (New Caledonian Zosterops spp.). Using visual and genus-specific molecular parasite screening, we identified high levels of co-infections that would have been missed using PCR alone. Avian malaria lineages were assigned to species level using morphological descriptions. We estimated parasite co-occurrence probabilities, while accounting for environmental predictors, in a hierarchical multivariate logistic regression. Co-infections occurred in 36% of infected birds. We identified both positively and negatively correlated parasite co-occurrence probabilities when accounting for host, habitat and island effects. Two of three pairwise avian malaria co-occurrences were strongly negative, despite each malaria parasite occurring across all islands and habitats. Birds with microfilariae had elevated heterophil to lymphocyte ratios and were all co-infected with avian malaria, consistent with evidence that host immune modulation by parasitic nematodes facilitates malaria co-infections. Importantly, co-occurrence patterns with microfilariae varied in direction among avian malaria species; two malaria parasites correlated positively but a third correlated negatively with microfilariae. We show that wildlife co-infections are frequent, possibly affecting infection rates through competition or facilitation. We argue that combining multiple diagnostic screening methods with multivariate logistic regression offers a platform to disentangle impacts of environmental factors and parasite co-occurrences on wildlife disease.


International Journal for Parasitology | 2015

Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird

Nicholas J. Clark; Sophie Olsson-Pons; Farah Ishtiaq; Sonya M. Clegg

Pathogens can influence the success of invaders. The Enemy Release Hypothesis predicts invaders encounter reduced pathogen abundance and diversity, while the Novel Weapons Hypothesis predicts invaders carry novel pathogens that spill over to competitors. We tested these hypotheses using avian malaria (haemosporidian) infections in the invasive myna (Acridotheres tristis), which was introduced to southeastern Australia from India and was secondarily expanded to the eastern Australian coast. Mynas and native Australian birds were screened in the secondary introduction range for haemosporidians (Plasmodium and Haemoproteus spp.) and results were combined with published data from the mynas primary introduction and native ranges. We compared malaria prevalence and diversity across myna populations to test for Enemy Release and used phylogeographic analyses to test for exotic strains acting as Novel Weapons. Introduced mynas carried significantly lower parasite diversity than native mynas and significantly lower Haemoproteus prevalence than native Australian birds. Despite commonly infecting native species that directly co-occur with mynas, Haemoproteus spp. were only recorded in introduced mynas in the primary introduction range and were apparently lost during secondary expansion. In contrast, Plasmodium infections were common in all ranges and prevalence was significantly higher in both introduced and native mynas than in native Australian birds. Introduced mynas carried several exotic Plasmodium lineages that were shared with native mynas, some of which also infected native Australian birds and two of which are highly invasive in other bioregions. Our results suggest that introduced mynas may benefit through escape from Haemoproteus spp. while acting as important reservoirs for Plasmodium spp., some of which are known exotic lineages.


Parasites & Vectors | 2018

Parasite spread at the domestic animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea ( Ctenocephalides spp.) infestation in wild mammals

Nicholas J. Clark; Jennifer M. Seddon; Jan Šlapeta; Konstans Wells

BackgroundSpillover of parasites at the domestic animal - wildlife interface is a pervasive threat to animal health. Cat and dog fleas (Ctenocephalides felis and C. canis) are among the world’s most invasive and economically important ectoparasites. Although both species are presumed to infest a diversity of host species across the globe, knowledge on their distributions in wildlife is poor. We built a global dataset of wild mammal host associations for cat and dog fleas, and used Bayesian hierarchical models to identify traits that predict wildlife infestation probability. We complemented this by calculating functional-phylogenetic host specificity to assess whether fleas are restricted to hosts with similar evolutionary histories, diet or habitat niches.ResultsOver 130 wildlife species have been found to harbour cat fleas, representing nearly 20% of all mammal species sampled for fleas. Phylogenetic models indicate cat fleas are capable of infesting a broad diversity of wild mammal species through ecological fitting. Those that use anthropogenic habitats are at highest risk. Dog fleas, by contrast, have been recorded in 31 mammal species that are primarily restricted to certain phylogenetic clades, including canids, felids and murids. Both flea species are commonly reported infesting mammals that are feral (free-roaming cats and dogs) or introduced (red foxes, black rats and brown rats), suggesting the breakdown of barriers between wildlife and invasive reservoir species will increase spillover at the domestic animal - wildlife interface.ConclusionsOur empirical evidence shows that cat fleas are incredibly host-generalist, likely exhibiting a host range that is among the broadest of all ectoparasites. Reducing wild species’ contact rates with domestic animals across natural and anthropogenic habitats, together with mitigating impacts of invasive reservoir hosts, will be crucial for reducing invasive flea infestations in wild mammals.


Environmental Biology of Fishes | 2012

Ontogenetic shifts in the habitat associations of butterflyfishes (F. Chaetodontidae)

Nicholas J. Clark; Garry R. Russ

The habitat associations of species are vital in determining an organism’s vulnerability to environmental and anthropogenic stress. In the marine environment, post-settlement processes such as ontogenetic shifts in habitat use can affect this vulnerability by subjecting a species to differing biological and environmental conditions at various life stages. This study documents the habitat associations of adult and juvenile butterflyfishes on an inshore reef of the Great Barrier Reef (GBR) to investigate if ontogenetic shifts in habitat use occur, and if such shifts relate to the trophic ecologies of species. Coral-feeding species displayed highly concordant distributions among adults and juveniles. In contrast, adults and juveniles of species with wider dietary selectivities (generalists) displayed significantly different distributions across reef zones. Juvenile generalist feeders were limited to the shallow, patchy areas of the reef flat whilst adult conspecifics displayed comparatively wide distributions. Butterflyfishes with a heavy reliance on corals for food appear to settle preferentially in areas with high abundances of adult conspecifics, which may partially explain why coral specialists are more vulnerable to localized depletion events. In contrast, generalist species utilize distinct habitats as adults and juveniles, suggesting that generalist butterflyfishes expand their ranges and are therefore subjected to changing environmental conditions as they reach adulthood.


Virus Genes | 2017

A new look at the origins of gibbon ape leukemia virus

Jeff J. McKee; Nicholas J. Clark; Frances M Shapter; Greg Simmons

Is the origin of gibbon ape leukemia virus (GALV) human after all? When GALV was discovered and found to cause neoplastic disease in gibbons, it stimulated a great deal of research including investigations into the origins of this virus. A number of publications have suggested that the GALV progenitor was a retrovirus present in one of several species of South East Asian rodents that had close contact with captive gibbons. However, there are no published retroviral sequences from any South East Asian species to support this view. Here we present an alternative hypothesis that the origin of GALV is a virus closely related to Melomys burtoni retrovirus, and that this virus infected human patients in Papua New Guinea from whom biological material was obtained or in some way contaminated these samples. This material we propose contained infectious MbRV-related virus that was then unwittingly introduced into gibbons which subsequently developed GALV infections.


Oecologia | 2016

Why fly the extra mile? Using stress biomarkers to assess wintering habitat quality in migratory shorebirds

Yaara Aharon-Rotman; Katherine L. Buchanan; Nicholas J. Clark; Marcel Klaassen; William A. Buttemer

Migratory birds make decisions about how far to travel based on cost-benefit trade-offs. However, in many cases the net effect of these trade-offs is unclear. We sought to address this question by measuring feather corticosterone (CORTf), leucocyte profile, avian malaria parasite prevalence and estimating fueling rates in three spatially segregated wintering populations of the migratory shorebird ruddy turnstone Arenaria interpres during their stay in the winter habitat. These birds fly from the high-Arctic breeding ground to Australia, but differ in that some decide to end their migration early (Broome, Western Australia), whereas others travel further to either South Australia or Tasmania. We hypothesized that the extra costs in birds migrating greater distances and overwintering in colder climates would be offset by benefits when reaching their destination. This would be evidenced by lower stress biomarkers in populations that travel further, owing to the expected benefits of greater resources and improved vitality. We show that avian malaria prevalence and physiological stress levels were lower in birds flying to South Australia and Tasmania than those overwintering in Broome. Furthermore, our modeling predicts that birds in the southernmost locations enjoy higher fueling rates. Our data are consistent with the interpretation that birds occupying more costly wintering locations in terms of higher migratory flight and thermoregulatory costs are compensated by better feeding conditions and lower blood parasite infections, which facilitates timely and speedy migration back to the breeding ground. These data contribute to our understanding of cost-benefit trade-offs in the decision making underlying migratory behaviour.


Infection, Genetics and Evolution | 2018

Emergence of canine parvovirus subtype 2b (CPV-2b) infections in Australian dogs

Nicholas J. Clark; Jennifer M. Seddon; Myat Kyaw-Tanner; John Al-Alawneh; Gavin Harper; Phillip McDonagh; J. Meers

Tracing the temporal dynamics of pathogens is crucial for developing strategies to detect and limit disease emergence. Canine parvovirus (CPV-2) is an enteric virus causing morbidity and mortality in dogs around the globe. Previous work in Australia reported that the majority of cases were associated with the CPV-2a subtype, an unexpected finding since CPV-2a was rapidly replaced by another subtype (CPV-2b) in many countries. Using a nine-year dataset of CPV-2 infections from 396 dogs sampled across Australia, we assessed the population dynamics and molecular epidemiology of circulating CPV-2 subtypes. Bayesian phylogenetic Skygrid models and logistic regressions were used to trace the temporal dynamics of CPV-2 infections in dogs sampled from 2007 to 2016. Phylogenetic models indicated that CPV-2a likely emerged in Australia between 1973 and 1988, while CPV-2b likely emerged between 1985 and 1998. Sequences from both subtypes were found in dogs across continental Australia and Tasmania, with no apparent effect of climate variability on subtype occurrence. Both variant subtypes exhibited a classical disease emergence pattern of relatively high rates of evolution during early emergence followed by subsequent decreases in evolutionary rates over time. However, the CPV-2b subtype maintained higher mutation rates than CPV-2a and continued to expand, resulting in an increase in the probability that dogs will carry this subtype over time. Ongoing monitoring programs that provide molecular epidemiology surveillance will be necessary to detect emergence of new variants and make informed recommendations to develop reliable detection and vaccine methods.

Collaboration


Dive into the Nicholas J. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Goulding

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Farah Ishtiaq

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David I. Gibson

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge