Nicholas J. Conard
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas J. Conard.
Nature | 2014
Thomas Higham; Katerina Douka; Rachel Wood; Christopher Bronk Ramsey; Fiona Brock; Laura Basell; Marta Camps; Alvaro Arrizabalaga; Javier Baena; Cecillio Barroso-Ruíz; Christopher A. Bergman; Coralie Boitard; Paolo Boscato; Miguel Caparrós; Nicholas J. Conard; Christelle Draily; Alain Froment; Bertila Galván; Paolo Gambassini; Alejandro García-Moreno; Stefano Grimaldi; Paul Haesaerts; Brigitte M. Holt; María-José Iriarte-Chiapusso; Arthur Jelinek; Jesús Francisco Jordá Pardo; José-Manuel Maíllo-Fernández; Anat Marom; Julià Maroto; Mario Menéndez
The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry 14C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030–39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding ‘transitional’ archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600–5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.
Nature | 2016
Qiaomei Fu; Cosimo Posth; Mateja Hajdinjak; Martin Petr; Swapan Mallick; Daniel Fernandes; Anja Furtwängler; Wolfgang Haak; Matthias Meyer; Alissa Mittnik; Birgit Nickel; Alexander Peltzer; Nadin Rohland; Viviane Slon; Sahra Talamo; Iosif Lazaridis; Mark Lipson; Iain Mathieson; Stephan Schiffels; Pontus Skoglund; A.P. Derevianko; Nikolai Drozdov; Vyacheslav Slavinsky; Alexander Tsybankov; Renata Grifoni Cremonesi; Francesco Mallegni; Bernard Gély; Eligio Vacca; Manuel Ramón González Morales; Lawrence Guy Straus
Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.
Nature | 2009
Nicholas J. Conard; Maria Malina; Susanne C. Münzel
Considerable debate surrounds claims for early evidence of music in the archaeological record. Researchers universally accept the existence of complex musical instruments as an indication of fully modern behaviour and advanced symbolic communication but, owing to the scarcity of finds, the archaeological record of the evolution and spread of music remains incomplete. Although arguments have been made for Neanderthal musical traditions and the presence of musical instruments in Middle Palaeolithic assemblages, concrete evidence to support these claims is lacking. Here we report the discovery of bone and ivory flutes from the early Aurignacian period of southwestern Germany. These finds demonstrate the presence of a well-established musical tradition at the time when modern humans colonized Europe, more than 35,000 calendar years ago. Other than the caves of the Swabian Jura, the earliest secure archaeological evidence for music comes from sites in France and Austria and post-date 30,000 years ago.
Nature | 2009
Nicholas J. Conard
Despite well over 100 years of research and debate, the origins of art remain contentious. In recent years, abstract depictions have been documented at southern African sites dating to ∼75 kyr before present (bp), and the earliest figurative art, which is often seen as an important proxy for advanced symbolic communication, has been documented in Europe as dating to between 30 and 40 kyr bp. Here I report the discovery of a female mammoth-ivory figurine in the basal Aurignacian deposit at Hohle Fels Cave in the Swabian Jura of southwestern Germany during excavations in 2008. This figurine was produced at least 35,000 calendar years ago, making it one of the oldest known examples of figurative art. This discovery predates the well-known Venuses from the Gravettian culture by at least 5,000 years and radically changes our views of the context and meaning of the earliest Palaeolithic art.
Journal of Human Evolution | 2012
Thomas Higham; Laura Basell; Roger Jacobi; Rachel Wood; Christopher Bronk Ramsey; Nicholas J. Conard
The German site of Geißenklösterle is crucial to debates concerning the European Middle to Upper Palaeolithic transition and the origins of the Aurignacian in Europe. Previous dates from the site are central to an important hypothesis, the Kulturpumpe model, which posits that the Swabian Jura was an area where crucial behavioural developments took place and then spread to other parts of Europe. The previous chronology (critical to the model), is based mainly on radiocarbon dating, but remains poorly constrained due to the dating resolution and the variability of dates. The cause of these problems is disputed, but two principal explanations have been proposed: a) larger than expected variations in the production of atmospheric radiocarbon, and b) taphonomic influences in the site mixing the bones that were dated into different parts of the site. We reinvestigate the chronology using a new series of radiocarbon determinations obtained from the Mousterian, Aurignacian and Gravettian levels. The results strongly imply that the previous dates were affected by insufficient decontamination of the bone collagen prior to dating. Using an ultrafiltration protocol the chronometric picture becomes much clearer. Comparison of the results against other recently dated sites in other parts of Europe suggests the Early Aurignacian levels are earlier than other sites in the south of France and Italy, but not as early as recently dated sites which suggest a pre-Aurignacian dispersal of modern humans to Italy by ∼45000 cal BP. They are consistent with the importance of the Danube Corridor as a key route for the movement of people and ideas. The new dates fail to refute the Kulturpumpe model and suggest that Swabian Jura is a region that contributed significantly to the evolution of symbolic behaviour as indicated by early evidence for figurative art, music and mythical imagery.
Nature | 2003
Nicholas J. Conard
Archaeologists have always viewed the origin of figurative art as a crucial threshold in human evolution. Here I report the discovery of three figurines carved from mammoth ivory at Hohle Fels Cave in the Swabian Jura of southwestern Germany, which provides new evidence for the appearance of figurative art more than 30,000 years ago. The finds include the oldest known representation of a bird, a therianthropic sculpture and an animal that most closely resembles a horse. The Aurignacian sculptures of the Swabian Jura belong to one of the oldest traditions of figurative art known worldwide and point to the Upper Danube as an important centre of cultural innovation during the early Upper Palaeolithic period.
Nature | 2004
Nicholas J. Conard; Pieter Meiert Grootes; Fred H. Smith
The human skeletal remains from the Vogelherd cave in the Swabian Jura of southwestern Germany are at present seen as the best evidence that modern humans produced the artefacts of the early Aurignacian. Radiocarbon measurements from all the key fossils from Vogelherd show that these human remains actually date to the late Neolithic, between 3,900 and 5,000 radiocarbon years before present (bp). Although many questions remain unresolved, these results weaken the arguments for the Danube Corridor hypothesis—that there was an early migration of modern humans into the Upper Danube drainage—and strengthen the view that Neanderthals may have contributed significantly to the development of Upper Palaeolithic cultural traits independent of the arrival of modern humans.
Current Biology | 2016
Cosimo Posth; Gabriel Renaud; Alissa Mittnik; Dorothée G. Drucker; Hélène Rougier; Christophe Cupillard; Frédérique Valentin; Corinne Thevenet; Anja Furtwängler; Christoph Wißing; Michael Francken; Maria Malina; Michael Bolus; Martina Lari; Elena Gigli; Giulia Capecchi; Isabelle Crevecoeur; Cédric Beauval; Damien Flas; Mietje Germonpré; Johannes van der Plicht; Richard Cottiaux; Bernard Gély; Annamaria Ronchitelli; Kurt Wehrberger; Dan Grigorescu; Jiří Svoboda; Patrick Semal; David Caramelli; Hervé Bocherens
How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.
Science | 2013
Simone Riehl; Mohsen Zeidi; Nicholas J. Conard
Early Farmers? What was the role of the eastern Fertile Crescent (which includes southeastern Turkey, northeastern Iraq, and western Iran) in the transition from foraging to farming? Riehl et al. (p. 65; see the Perspective by Willcox) investigated an archaeobotanical assemblage from Chogha Golan, in modern Iran over an apparently continuous occupation of the site over 2000 years, which captures the transition from foraging to farming. The rich archaeobotanical remains suggest the use of a wide array of plant species, including the progenitors of key crop plants (wheat, barley, and large-seeded legumes). Residents of the eastern Fertile Crescent thus appear to have been involved in plant management and possibly in the domestication of wild crop plants. An archaeobotanical assemblage spans the transition period from foraging to farming in the Near East. [Also see Perspective by Wilcox] The role of Iran as a center of origin for domesticated cereals has long been debated. High stratigraphic resolution and rich archaeological remains at the aceramic Neolithic site of Chogha Golan (Ilam Province, present-day Iran) reveal a sequence ranging over 2200 years of cultivation of wild plants and the first appearance of domesticated-type species. The botanical record from Chogha Golan documents how the inhabitants of the site cultivated wild barley (Hordeum spontaneum) and other wild progenitor species of modern crops, such as wild lentil and pea. Wild wheat species (Triticum spp.) are initially present at less than 10% of total plant species but increase to more than 20% during the last 300 years of the sequence. Around 9800 calendar years before the present, domesticated-type emmer appears. The archaeobotanical remains from Chogha Golan represent the earliest record of long-term plant management in Iran.
Journal of Human Evolution | 2008
Nicholas J. Conard; Michael Bolus
Many lines of evidence point to the period between roughly 40 and 30 ka BP as the period in which modern humans arrived in Europe and displaced the indigenous Neandertal populations. At the same time, many innovations associated with the Upper Paleolithic--including new stone and organic technologies, use of personal ornaments, figurative art, and musical instruments--are first documented in the European archaeological record. Dating the events of this period is challenging for several reasons. In the period about six to seven radiocarbon half-lives ago, variable preservation, pre-treatment, and sample preparation can easily lead to a lack of reproducibility between samples and laboratories. A range of biological, cultural, and geological processes can lead to mixing of archaeological strata and their contents. Additionally, some data sets point to this period as a time of significant spikes in levels of atmospheric radiocarbon. This paper assesses these questions in the context of the well-excavated and intensively studied caves of Geissenklösterle and Hohle Fels in the Swabian Jura of southwestern Germany. We conclude that variable atmospheric radiocarbon production contributes to the problems of dating the late Middle Paleolithic and the early Upper Paleolithic. To help establish a reliable chronology for the Swabian Aurignacian, we are beginning to focus our dating program on short-lived, stratigraphically secure features to see if they yield reproducible results. This approach may help to test competing explanations for the noisy and often non-reproducible results that arise when trying to date the transition from the Middle to the Upper Paleolithic.