Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Dyson is active.

Publication


Featured researches published by Nicholas J. Dyson.


The EMBO Journal | 1989

Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product.

Münger K; Werness Ba; Nicholas J. Dyson; W C Phelps; Ed Harlow; Peter M. Howley

The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105‐RB). Similar to the E7 protein of HPV‐16, the E7 proteins of HPV‐18, HBV‐6b and HPV‐11 were found to associate with p105‐RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV‐16 and HPV‐18) formed complexes with p105‐RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105‐RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV‐1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105‐RB. The amino acid sequences of the HPV‐16 E7 protein involved in complex formation with p105‐RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105‐RB. Furthermore, the HPV‐16 E7‐p105‐RB complex was detected in an HPV‐16‐transformed human keratinocyte cell line.


Cell | 1996

Tumor Induction and Tissue Atrophy in Mice Lacking E2F-1

Lili Yamasaki; Tyler Jacks; Roderick T. Bronson; Evelyne Goillot; Ed Harlow; Nicholas J. Dyson

The retinoblastoma tumor suppressor protein (pRB) is a transcriptional repressor that regulates gene expression by physically associating with transcription factors such as E2F family members. Although pRB and its upstream regulators are commonly mutated in human cancer, the physiological role of the pRB-E2F pathway is unknown. To address the function of E2F-1 and pRB/E2F-1 complexes in vivo, we have produced mice homozygous for a nonfunctional E2F-1 allele. Mice lacking E2F-1 are viable and fertile, yet experience testicular atrophy and exocrine gland dysplasia. Surprisingly, mice lacking E2F-1 develop a broad and unusual spectrum of tumors. Although overexpression of E2F-1 in tissue culture cells can stimulate cell proliferation and be oncogenic, loss of E2F-1 in mice results in tumorigenesis, demonstrating that E2F-1 also functions as a tumor suppressor.


Cell | 1992

A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

Kristian Helin; Jacqueline A. Lees; Marc Vidal; Nicholas J. Dyson; Ed Harlow; Ali Fattaey

The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3, was identified by the ability of its gene product to interact with pRB. RBP3 bound to pRB both in vitro and in vivo, and this binding was competed by viral proteins known to disrupt pRB-E2F association. RBP3 bound to E2F recognition sequences in a sequence-specific manner. Furthermore, transient expression of RBP3 caused a 10-fold transactivation of the adenovirus E2 promoter, and this transactivation was dependent on the E2F recognition sequences. These properties suggest that RBP3 encodes E2F, or an E2F-like protein.


Oncogene | 2005

The E2F transcriptional network: old acquaintances with new faces

Desssislava K Dimova; Nicholas J. Dyson

The E2 factor (E2F) family of transcription factors are downstream targets of the retinoblastoma protein. E2F factors have been known for several years to be important regulators of S-phase entry. Recent studies have improved our understanding of the molecular mechanisms of action used by this transcriptional network. In addition, they have given us an appreciation of the fact that E2F has functions that reach beyond G1/S control and impact cell proliferation in several different ways. The discovery of new family members with unusual properties, the unexpected phenotypes of mutant animals, a diverse collection of biological activities, a large number of new putative target genes and the new modes of transcriptional regulation have all contributed to an increasingly complex view of E2F function. In this review, we will discuss these recent developments and describe how they are beginning to shape a new and revised picture of the E2F transcriptional program.


Molecular and Cellular Biology | 1993

The retinoblastoma protein binds to a family of E2F transcription factors.

Jacqueline A. Lees; M Saito; Marc Vidal; Marcus B. Valentine; T Look; Ed Harlow; Nicholas J. Dyson; Kristian Helin

E2F is a transcription factor that helps regulate the expression of a number of genes that are important in cell proliferation. Recently, several laboratories have isolated a cDNA clone that encodes an E2F-like protein, known as E2F-1. Subsequent characterization of this protein showed that it had the properties of E2F, but it was difficult to account for all of the suggested E2F activities through the function of this one protein. Using low-stringency hybridization, we have isolated cDNA clones that encode two additional E2F-like proteins, called E2F-2 and E2F-3. The chromosomal locations of the genes for E2F-2 and E2F-3 were mapped to 1p36 and 6q22, respectfully, confirming their independence from E2F-1. However, the E2F-2 and E2F-3 proteins are closely related to E2F-1. Both E2F-2 and E2F-3 bound to wild-type but not mutant E2F recognition sites, and they bound specifically to the retinoblastoma protein in vivo. Finally, E2F-2 and E2F-3 were able to activate transcription of E2F-responsive genes in a manner that was dependent upon the presence of at least one functional E2F binding site. These observations suggest that the E2F activities described previously result from the combined action of a family of proteins.


Current Opinion in Cell Biology | 2002

A revised picture of the E2F transcriptional network and RB function

Olivier Stevaux; Nicholas J. Dyson

New techniques have enhanced our picture of E2F regulation. These studies have shed light on the roles played by individual E2F and retinoblastoma family members and implicate these proteins in processes extending well beyond the G1/S transition. One thorny issue remains: do our current molecular models of E2F and retinoblastoma action explain all of the functions of these proteins in vivo?


Nature Reviews Molecular Cell Biology | 2008

Conserved functions of the pRB and E2F families.

Sander van den Heuvel; Nicholas J. Dyson

Proteins that are related to the retinoblastoma tumour suppressor pRB and the E2F transcription factor are conserved in many species of plants and animals. The mammalian orthologues of pRB and E2F are best known for their roles in cell proliferation, but it has become clear that they affect many biological processes. Here we describe the functions of pRB-related proteins and E2F proteins that have emerged from genetic and biochemical experiments in Caenorhabditis elegans and Drosophila melanogaster. The similarities that have been observed between worms, flies and mammals provide insight into the core activities of pRB and E2F proteins and show how a common regulatory module can control various biological functions in different organisms.


Journal of Cell Science | 2004

Molecular mechanisms of E2F-dependent activation and pRB-mediated repression

Maxim V. Frolov; Nicholas J. Dyson

Alterations in transcription of genes regulated by members of the E2F family of transcription factors can be viewed as a measure of the ebb and flow in a constantly evolving battle between repressor and activator complexes. Various chromatin regulatory complexes have been linked to Rb/E2F proteins, and changes in histone modifications correlate with states of E2F-dependent transcription. E2F has traditionally been viewed in the context of cell-cycle control. However, several recent studies have revealed a new aspect of E2F function in which pRB/E2F-family proteins confer stable repression of transcription. Such repression is evident in both actively proliferating cells and in cells that have withdrawn from the cell cycle.


Advances in Cancer Research | 2001

Retinoblastoma protein partners.

Erick J. Morris; Nicholas J. Dyson

Studies of the retinoblastoma gene (Rb) have shown that its protein product (pRb) acts to restrict cell proliferation, inhibit apoptosis, and promote cell differentiation. The frequent mutation of the Rb gene, and the functional inactivation of pRb in tumor cells, have spurred interest in the mechanism of pRb action. Recently, much attention has focused on pRbs role in the regulation of the E2F transcription factor. However, biochemical studies have suggested that E2F is only one of many pRb-targets and, to date, at least 110 cellular proteins have been reported to associate with pRb. The plethora of pRb-binding proteins raises several important questions. How many functions does pRb possess, which of these functions are important for development, and which contribute to tumor suppression? The goal of this review is to summarize the current literature of pRb-associated proteins.


Nature | 2012

A novel retinoblastoma therapy from genomic and epigenetic analyses

Jinghui Zhang; Claudia A. Benavente; Justina McEvoy; Jacqueline Flores-Otero; Li Ding; Xiang Chen; Anatoly Ulyanov; Gang Wu; Matthew W. Wilson; Jianmin Wang; Rachel Brennan; Michael Rusch; Amity L. Manning; Jing Ma; John Easton; Sheila A. Shurtleff; Charles G. Mullighan; Stanley Pounds; Suraj Mukatira; Pankaj Gupta; Geoff Neale; David Zhao; Charles Lu; Robert S. Fulton; Lucinda Fulton; Xin Hong; David J. Dooling; Kerri Ochoa; Clayton W. Naeve; Nicholas J. Dyson

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.

Collaboration


Dive into the Nicholas J. Dyson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxim V. Frolov

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Frederick A. Dick

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge