Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Jacobs is active.

Publication


Featured researches published by Nicholas J. Jacobs.


Mbio | 2013

Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

Diana K. Morales; Nora Grahl; Chinweike Okegbe; Lars E. P. Dietrich; Nicholas J. Jacobs; Deborah A. Hogan

ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections. Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections.


Plant Physiology | 1993

Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides)

Judith M. Jacobs; Nicholas J. Jacobs

We have investigated the formation of porphyrin intermediates by isolated barley (Hordeum vulgare) plastids incubated for 40 min with the porphyrin precursor 5-aminolevulinate and in the presence and absence of a diphenylether herbicide that blocks protoporphyrinogen oxidase, the enzyme in chlorophyll and heme synthesis that oxidizes protoporphyrinogen IX to protoporphyrin IX. In the absence of herbicide, about 50% of the protoporphyrin IX formed was found in the extraplastidic medium, which was separated from intact plastids by centrifugation at the end of the incubation period. In contrast, uroporphyrinogen, an earlier intermediate, and magnesium protoporphyrin IX, a later intermediate, were located mainly within the plastid. When the incubation was carried out in the presence of a herbicide that inhibits protoporphyrinogen oxidase, protoporphyrin IX formation by the plastids was completely abolished, but large amounts of protoporphyrinogen accumulated in the extraplastidic medium. To detect extraplastidic protoporphyrinogen, it was necessary to first oxidize it to protoporphyrin IX with the use of a herbicide-resistant protoporphyrinogen oxidase enzyme present in Escherichia coli membranes. Protoporphyrinogen is not detected by some commonly used methods for porphyrin analysis unless it is first oxidized to protoporphyrin IX. Protoporphyrin IX and protoporphyrinogen found outside the plastid did not arise from plastid lysis, because the percentage of plastid lysis, measured with a stromal marker enzyme, was far less than the percentage of these porphyrins in the extraplastidic fraction. These findings suggest that of the tetrapyrrolic intermediates synthesized by the plastids, protoporphyrinogen and protoporphyrin IX, are the most likely to be exported from the plastid to the cytoplasm. These results help explain the extraplastidic accumulation of protoporphyrin IX in plants treated with photobleaching herbicides. In addition, these findings suggest that plastids may export protoporphyrinogen or protoporphyrin IX for mitochondrial heme synthesis.


Molecular Microbiology | 2010

Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms

Diana K. Morales; Nicholas J. Jacobs; Sathish Rajamani; Malathy Krishnamurthy; Juan R. Cubillos-Ruiz; Deborah A. Hogan

Pseudomonas aeruginosa produces several phenazines including the recently described 5‐methyl‐phenazine‐1‐carboxylic acid (5MPCA), which exhibits a novel antibiotic activity towards pathogenic fungi such as Candida albicans. Here we characterize the unique antifungal mechanisms of 5MPCA using its analogue phenazine methosulphate (PMS). Like 5MPCA, PMS induced fungal red pigmentation and killing. Mass spectrometry analyses demonstrated that PMS can be covalently modified by amino acids, a process that yields red derivatives. Furthermore, soluble proteins from C. albicans grown with either PMS or P. aeruginosa were also red and demonstrated absorbance and fluorescence spectra similar to that of PMS covalently linked to either amino acids or proteins in vitro, suggesting that 5MPCA modification by protein amine groups occurs in vivo. The red‐pigmented C. albicans soluble proteins were reduced by NADH and spontaneously oxidized by oxygen, a reaction that likely generates reactive oxygen species (ROS). Additional evidence indicated that ROS generation precedes 5MPCA‐induced fungal death. Reducing conditions greatly enhanced PMS uptake by C. albicans and killing. Since 5MPCA was more toxic than other phenazines that are not modified, such as pyocyanin, we propose that the covalent binding of 5MPCA promotes its accumulation in target cells and contributes to its antifungal activity in mixed‐species biofilms.


Archives of Biochemistry and Biophysics | 1990

Effects of the photobleaching herbicide, acifluorfen-methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules, and bacteria

Judith M. Jacobs; Nicholas J. Jacobs; Susan E. Borotz; Mary Lou Guerinot

The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.


Biochimica et Biophysica Acta | 1976

Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis

Nicholas J. Jacobs; J.M. Jacobs

Nitrate can serve as anaerobic electron acceptor for the oxidation of protoporphyrinogen to protoporphyrin in cell-free extracts of Escherichia coli grown anaerobically in the presence of nitrate. Two kinds of experiments indicated this: anaerobic protoporphyrin formation from protoporphyrinogen, followed spectrophotometrically, was markedly stimulated by addition of nitrate; and anaerobic protoheme formation from protoporphyrinogen, determined by extraction procedures, was markedly stimulated by addition of nitrate. In contrast, anaerobic protoheme formation from protoporphyrin was not dependent upon addition of nitrate. This was the first demonstration of the ability of nitrate to serve as electron acceptor for this late step of heme synthesis. Previous studies with mammalian and yeast mitochondria had indicated an obligatory requirement for molecular oxygen at this step. In confirmation of our previous preliminary report, fumarate was also shown to be an electron acceptor for anaerobic protoporphyrinogen oxidation in extracts of E. coli grown anaerobically on fumarate. For the first time, anaerobic protoheme formation from protoporphyrinogen, but not from protoporphyrin, was shown to be dependent upon the addition of fumarate. The importance of these findings is 2-fold. First, they establish that enzymatic protoporphyrinogen oxidation can occur in the absence of molecular oxygen, in contrast to previous observations using mammalian and yeast mitochondria. Secondly, these findings help explain the ability of some facultative and anaerobic bacteria to form very large amounts of heme compounds, such as cytochrome pigments, when grown anaerobically in the presence of nitrate or fumarate. In fact, denitrifying bacteria are known to form more cytochromes when grown anaerobically than during aerobic growth. An unexpected finding was that extracts of another bacterium, Staphylococcus epidermidis, exhibited very little ability to oxidize protoporphyrinogen to protoporphyrin as compared to E. coli extracts. This finding suggests some fundamental differences in these two organisms in this key step in heme synthesis. It is known that these two facultative organisms also differ in that E. coli synthesizes cytochrome during both aerobic and anaerobic growth, while Staphylococcus only synthesizes cytochromes when grown aerobically.


Biochemical and Biophysical Research Communications | 1975

Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli

Nicholas J. Jacobs; Judith M. Jacobs

Summary The anaerobic formation of protoheme from added excess delta amino levulinic acid was markedly reduced if fumarate was omitted from an anaerobic incubation mixture containing resting suspensions of E. coli grown anaerobically on a medium containing fumarate. However, the formation of coproporphyrinogen did not require fumarate, suggesting a role for fumarate at some step between coproporphyrinogen and heme in the anaerobic heme biosynthetic pathway. The appearance of fluorescence during the anaerobic incubation of these cell suspensions was also dependent upon the presence of fumarate, suggesting that fumarate could anaerobically oxidize protoporphyrinogen to protoporphyrin. This was confirmed by demonstrating that fumarate could serve as an alternate electron acceptor to replace oxygen in the oxidation of chemically reduced protoporphyrinogen under anaerobic conditions inextracts of these cells. This was the first demonstration of the enzymatic oxidation of protoporphyrinogen to protoporphyrin by a physiological electron acceptor other than oxygen in any type of cell.


Archives of Biochemistry and Biophysics | 1984

Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis: Partial characterization of the reaction in plant organelles and comparison with mammalian and bacterial systems☆

Judith M. Jacobs; Nicholas J. Jacobs

High rates of oxidation of protoporphyrinogen to protoporphyrin were demonstrable in etioplasts, chloroplasts, and mitochondria from young barley shoots. Much lower rates were observed in chloroplasts from older barley or mature spinach, in mitochondria from potatoes or rat liver, and in membranes from the bacteria Escherichia coli and Rhodopseudomonas spheroides. The presence of high activity in cells capable of rapid synthesis of large amounts of chlorophyll suggests a role for this activity in chlorophyll synthesis. Characteristics of the plant protoporphyrinogen-oxidizing activity were compared to the activity in rat liver mitochondria. The activity in spinach chloroplasts exhibited a pH optimum of 7, which was lower than that of the mammalian enzyme. The plant activity was more sensitive to inhibition by glutathione or excess detergent, and was more readily inactivated at room temperature. The plant activity exhibited less specificity toward porphyrinogen substrates, oxidizing mesoporphyrinogen as rapidly as protoporphyrinogen. The mammalian enzyme oxidized mesoporphyrinogen slowly, and neither system oxidized coproporphyrinogen or uroporphyrinogen. Both the plant and the mammalian activity were bound to organelle membranes, but could be extracted with detergents. In contrast, activity from membranes of the bacteria E. coli and R. spheroides was inactivated by detergent treatment. The plant extracts could be fractionated with ammonium sulfate and retained activity after dialysis or Sephadex G-25 treatment, suggesting no readily dissociable cofactor. The activity extracted from spinach chloroplasts was mostly inactivated by trypsin digestion, which was additional evidence for the protein nature of the plant activity.


Archives of Biochemistry and Biophysics | 1981

Protoporphyrinogen oxidation in Rhodopseudomonas spheroides, a step in heme and bacteriochlorophyll synthesis.

Nicholas J. Jacobs; Judith M. Jacobs

Abstract Protoporphyrinogen oxidizing activity in photosynthetically grown, bacteriochlorophyll-rich extracts of Rhodopseudomonas spheroides was heat labile, destroyed by trypsin digestion, associated with membranes, and proportional to extract concentration. Substrate specificity was indicated by the inability to oxidize other porphyrinogens. These properties are consistent with an enzymatic reaction. Activity was markedly inhibited by respiratory inhibitors such as cyanide, azide, and hydroxylamine, by reducing agents such as glutathione and 2-mercaptoethanol, and by respiratory substrates such as succinate and NADH. These agents as well as protoporphyrinogen also caused reduction of cytochromes during the assay. Extraction of quinones from membranes with pentane also inhibited protoporphyrinogen oxidation. These results clearly indicate that this oxidation in R. spheroides is closely linked with components of the respiratory electron transport chain, suggesting possibilities for regulation by light and oxygen. Cyanide did not cause inhibition of Protoporphyrinogen oxidation by rat liver mitochondria, suggesting different mechanisms for the bacterial and mitochondrial systems. In addition, an enzyme able to link protoporphyrinogen oxidation directly to oxygen was solubilized with Triton from rat liver mitochondria, but not from R. spheroides membranes. Membranes from R. spheroides grown aerobically, when bacteriochlorophyll synthesis does not occur, exhibited about half the protoporphyrinogen oxidizing activity as membranes from photosynthetically grown cells. This activity was also markedly inhibited by cyanide and could not be solubilized with Triton, but was not inhibited by glutathione.


Archives of Biochemistry and Biophysics | 1979

Microbial oxidation of protoporphyrinogen, an intermediate in heme and chlorophyll biosynthesis

Nicholas J. Jacobs; Judith M. Jacobs

Abstract The oxidation of protoporphyrinogen to protoporphyrin, a late step in heme and chlorophyll synthesis, is catalyzed aerobically by a particulate fraction of Escherichia coli at a rate significantly higher than the rate of autooxidation. This activity is heat labile and is markedly inhibited by addition of respiratory substrates such as NADH. NADH is oxidized at a rate 100-fold higher than protoporphyrinogen. Particles from a cytochrome-less mutant of E. coli were markedly deficient in protoporphyrinogen oxidizing activity. Particles from a quinone-deficient mutant were also deficient. These findings suggest a possible role for the electron transport system in aerobic protoporphyrinogen oxidation. This activity was also examined in a variety of other bacteria. Particles from Streptococcus faecalis , which does not synthesize heme, were unable to oxidize protoporphyrinogen, confirming the specificity of this activity. Particles from aerobically grown Staphylococcus aureus exhibited protoporphyrinogen oxidizing activity, but particles from anaerobically grown cells had no activity above that of the nonenzymatic control. This indicates the repressible nature of this activity, and may also explain why Staphylococci synthesize cytochromes during aerobic, but not during anaerobic growth. Particles from photosynthetically grown Rhodopseudomonas spheroides , which contain both chlorophyll and heme, oxidized protoporphyrinogen at a rate no higher than the nonenzymic control. However, particles from cells grown aerobically, when bacteriochlorophyll synthesis is markedly repressed, readily exhibited protoporphyrinogen oxidizing activity. These initial findings suggest that this activity is detectable in cells primarily synthesizing heme, but not in cells primarily synthesizing bacteriochlorophyll, and could have implications both for the mechanism and regulation of the heme and bacteriochlorophyll pathways.


Biochimica et Biophysica Acta | 1978

Quinones as hydrogen carriers for a late step in anaerobic heme biosynthesis in Escherichia coli

Nicholas J. Jacobs; J.M. Jacobs

A late step in anaerobic heme synthesis, the oxidation of protoprophyrinogen with fumarate as electron acceptor, was studied in extracts and particles of Escherichia coli mutants deficient in quinones or cytochromes. Mutants specifically deficient in menaquinone did not couple protoporphyrinogen oxidation to fumarate reduction, whereas mutants containing menaquinone but deficient in either ubiquinone or cytochromes exhibited this activity. These findings indicate that this coupled reaction is dependent upon menaquinone as hydrogen carrier but independent of ubiquinone and cytochromes. Other characteristics of this coupled reaction were also studied. The activity was located exclusively in the membrane fraction of cell-free extracts. Coproporphyrinogen III could not replace protoporphyrinogen as substrate. Methylene blue, triphenyl tetrazolium and nitrate, but not nitrite, could replace fumarate as anaerobic hydrogen acceptor. These findings have implications for the mechanism and regulation of microbial heme and chlorophyll synthesis and for the physiology of cytochrome synthesis in anaerobic microorganisms.

Collaboration


Dive into the Nicholas J. Jacobs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen O. Duke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck E. Dayan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge