Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Lodge is active.

Publication


Featured researches published by Nicholas J. Lodge.


European Journal of Pharmacology | 1995

Functional role of endothelin ETA and ETB receptors in venous and arterial smooth muscle

Nicholas J. Lodge; Rongan Zhang; Nelly N. Halaka; Suzanne Moreland

The functional importance of endothelin ETA and ETB receptors in selected arterial and venous smooth muscle preparations was characterized. Endothelin-1 induced force in the saphenous and jugular veins is normally mediated by endothelin ETB-like receptors. However, desensitization or pharmacological block of these receptors reveals an endothelin ETA receptor population that is of sufficient size to mediate full endothelin-1-evoked force. Block of either endothelin ETA or endothelin ETB receptors alone is insufficient to antagonize endothelin-1-evoked force in saphenous vein. Endothelin-1-induced force in hamster aorta may also be mediated by activation of both endothelin ETA and ETB receptors. However, activation of endothelin ETB-like receptors alone is insufficient to generate a full endothelin-1 response. Sarafotoxin S6c treatment, to desensitize endothelin ETB receptors, failed to affect the responses of rat aorta and rabbit carotid artery to endothelin-1 or endothelin ETA receptor antagonists. These findings indicate that selective endothelin receptor antagonists will vary enormously in their efficacy against endothelin-induced force in different vascular beds.


Neuropharmacology | 2008

Ex vivo assessment of binding site occupancy of monoamine reuptake inhibitors: Methodology and biological significance

Kelly Lengyel; Rick L. Pieschl; Todd Strong; Thaddeus F. Molski; Gail K. Mattson; Nicholas J. Lodge; Yu-Wen Li

The goal of this study was to develop and validate ex vivo binding assays for serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, and to use these assays to evaluate the binding site occupancy of triple and double monoamine reuptake inhibitors in rat brains. This study demonstrated that while autoradiographic methods provided anatomic precision and regional resolution, the homogenate binding method for site occupancy assessment yielded comparable sensitivity with markedly improved throughput. For ex vivo binding assays, the reduction of temperature and time during the in vitro process (primarily incubation with a radioligand) markedly decreased the dissociation of test agents from binding sites in brain tissues. This reduction, in turn, minimized the potential for underestimation of site occupancy in vivo especially for test compounds with affinity >10nM. The ratios of measured occupancy ED(50) values (doses at which 50% occupancy occurs) among SERT, NET and DAT sites for duloxetine, venlafaxine, nomifensine, indatraline, DOV 21,947 and DOV 216,303 were consistent with the ratios of the in vitro affinities between these target binding sites. The biological relevance of the monoamine transporter occupancy for these compounds is discussed.


Bioorganic & Medicinal Chemistry Letters | 2008

Initial SAR studies on apamin-displacing 2-aminothiazole blockers of calcium-activated small conductance potassium channels.

Robert G. Gentles; Katherine Grant-Young; Shuanghua Hu; Yazhong Huang; Michael A. Poss; Charles J. Andres; Tracey Fiedler; Ronald J. Knox; Nicholas J. Lodge; C. David Weaver; David G. Harden

An initial SAR study on a series of apamin-displacing 2-aminothiazole K(Ca)2 channel blockers is described. Potent inhibitors such as N-(4-methylpyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (13) are disclosed, and for select members of the series, the relationship between the observed activity in a thallium flux, a binding and a whole-cell electrophysiology assay is presented.


The Journal of Urology | 1996

Pharmacological Characterization of the Isolated Canine Prostate

Diane E. Normandin; Nicholas J. Lodge

PURPOSE The goal of the present study was to characterize the responses of the isolated normal canine prostate to various contracting and relaxing stimuli to determine which pharmacological agents may have utility against the dynamic component of benign prostatic hyperplasia (BPH). MATERIALS AND METHODS Isometric force development was measured in isolated strips of prostate tissue. RESULTS The alpha-adrenergic agonists were the most efficacious stimulants tested (phenylephrine EC50=2.1 microM.). Endothelin-1, acting primarily via ETA receptors, was more potent (EC50=27nM.) but less efficacious. Histamine (EC50=14.7 microM.), serotonin (EC50=0.12 microM.), carbachol (EC50=5.9 microM.) and KC1 (EC50=48.8 mM.) were also less efficacious than phenylephrine. Nifedipine was a potent (IC50=28 nM.) and efficacious (74% inhibition) inhibitor of phenylephrine-induced force. Potassium channel activator drugs were also efficacious relaxants, producing approximately 80% inhibition of force; rank order of potency was P1075 > cromakalim > diazoxide. Sodium nitroprusside was a weak relaxant, producing only approximately 40% relaxation at a concentration of 100 micronM. Both isoproterenol and forskolin were effective relaxants (75 to 90% relaxation). CONCLUSIONS We conclude that potassium channel activators, adenylate cyclase stimulators, or endothelin antagonists may have utility against the dynamic component of outflow obstruction secondary to BPH.


Bioorganic & Medicinal Chemistry Letters | 2002

The synthesis and structure-activity relationships of 1,3-diaryl 1,2,4-(4H)-triazol-5-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel opener targeted for urge urinary incontinence.

Piyasena Hewawasam; Matthew Erway; George Thalody; Harvey Weiner; Christopher G. Boissard; Valentin K. Gribkoff; Nicholas A. Meanwell; Nicholas J. Lodge; John E. Starrett

A series of 1,3-diaryl 1,2,4-(4H)-triazol-5-ones was prepared and shown by electrophysiological analysis to activate a cloned maxi-K channel mSlo (or hSlo) expressed in Xenopus laevis oocytes. The effects of these structurally novel maxi-K channel openers on bladder contractile function were studied in vitro using isolated rat bladder strips pre-contracted with carbachol. Several 1,3-diaryl 1,2,4-(4H)-triazol-5-one derivatives were found to be potent smooth muscle relaxants but this activity did not completely correlate with maxi-K channel opening.


Bioorganic & Medicinal Chemistry Letters | 2009

Conformationally restricted homotryptamines. Part 5: 3-(trans-2-aminomethylcyclopentyl)indoles as potent selective serotonin reuptake inhibitors

Derek J. Denhart; Jeffrey A. Deskus; Jonathan L. Ditta; Qi Gao; H. Dalton King; Edward S. Kozlowski; Zhaoxing Meng; Melissa A. Lapaglia; Gail K. Mattson; Thaddeus F. Molski; Matthew T. Taber; Nicholas J. Lodge; Ronald J. Mattson; John E. Macor

A series of racemic 3-(trans-2-aminomethylcyclopentyl)indoles was synthesized and found to have potent binding to the human serotonin transporter (hSERT). The most active analog was synthesized stereospecifically and the active enantiomer was shown to have high affinity binding to hSERT.


PLOS Genetics | 2006

Chemical Genetics Reveals an RGS/G-Protein Role in the Action of a Compound

Kevin Fitzgerald; Svetlana Tertyshnikova; Lisa Moore; Lynn Margaret Bjerke; Ben Burley; Jian Cao; Pamela M. Carroll; Robert Choy; Steve Doberstein; Yves Dubaquie; Yvonne Franke; Jenny Kopczynski; Hendrik C. Korswagen; Stanley R. Krystek; Nicholas J. Lodge; Ronald H.A. Plasterk; John E. Starrett; Terry R. Stouch; George Thalody; Honey Wayne; Alexander M. van der Linden; Yongmei Zhang; Stephen G. Walker; Mark Cockett; Judi Wardwell-Swanson; Petra Ross-Macdonald; Rachel M. Kindt

We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation.


Neuropsychopharmacology | 2008

Behavioral and Pharmacological Validation of the Gerbil Forced-Swim Test: Effects of Neurokinin-1 Receptor Antagonists

Tanya L. Wallace-Boone; Amy Newton; Robert N. Wright; Nicholas J. Lodge; John F. McElroy

Several studies have suggested that neurokinin-1 (NK1) receptor antagonists may have therapeutic potential as novel antidepressant drugs. To test these compounds preclinically, gerbils have become one of the preferred species in that they demonstrate close NK1 receptor homology with humans and bind NK1 antagonists with higher affinity than rats and mice. The intent of the present study was to determine whether the forced-swim test (FST), one of the most commonly used animal tests of antidepressant-like activity, could be adapted for use with the gerbil. Critical factors in the establishment of this assay included swim tank diameter, weight, and sex of the animals tested. Pharmacological validation of the FST using standard antidepressant compounds (eg fluoxetine, paroxetine, desipramine) resulted in decreased immobility time during the test, indicative of an antidepressant-like effect. Similar to results reported for the rat and mouse FST, the antipsychotic drug haloperidol increased immobility, whereas the psychostimulant, amphetamine decreased immobility, and anxiolytic drugs (eg buspirone) had no effect. Investigation into the locomotor effects of all compounds tested was consistent with previous reports in other species, with the exception of paroxetine, which produced hyperactivity at therapeutically effective doses in gerbils. In addition to standard antidepressants, NK1 antagonists (L-733060, MK-869, and CP-122721) all reduced immobility in the gerbil FST without affecting locomotor activity. Overall, these results suggest that the gerbil is an ideal species for use in the FST, and that this paradigm may have predictive validity for identifying novel antidepressant compounds.


Neuropharmacology | 2013

MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat

Digavalli V. Sivarao; Mikhail Y. Frenkel; Ping Chen; Francine Healy; Nicholas J. Lodge; Robert Zaczek

Patients with schizophrenia show marked deficits in processing sensory inputs including a reduction in the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation. Such deficits are not readily demonstrable at other input frequencies. Acute administration of NMDA antagonists to healthy human subjects or laboratory animals is known to reproduce many sensory and cognitive deficits seen in schizophrenia patients. In the following study, we tested the hypothesis that the NMDA antagonist MK-801 would selectively disrupt steady-state gamma entrainment in the auditory cortex of urethane-anesthetized rat. Moreover, we further hypothesized that nicotinic receptor activation would alleviate this disruption. Auditory steady state responses were recorded in response to auditory stimuli delivered over a range of frequencies (10-80 Hz) and averaged over 50 trials. Evoked power was computed under baseline condition and after vehicle or MK-801 (0.03 mg/kg, iv). MK-801 produced a significant attenuation in response to 40 Hz auditory stimuli while entrainment to other frequencies was not affected. Time-frequency analysis revealed deficits in both power and phase-locking to 40 Hz. Nicotine (0.1 mg/kg, iv) administered after MK-801 reversed the attenuation of the 40 Hz response. Administered alone, nicotine augmented 40 Hz steady state power and phase-locking. Nicotines effects were blocked by simultaneous administration of the α4β2 antagonist DHßE. Thus we report for the first time, a rodent model that mimics a core neurophysiological deficit seen in patients with schizophrenia and a pharmacological approach to alleviate it.


Pharmacology, Biochemistry and Behavior | 2005

Neurochemical, pharmacokinetic, and behavioral effects of the novel selective serotonin reuptake inhibitor BMS-505130

Matthew T. Taber; Robert N. Wright; Thaddeus F. Molski; Wendy Clarke; Patrick J. Brassil; Derek J. Denhart; Ronald J. Mattson; Nicholas J. Lodge

BMS-505130 is a potent and selective serotonin transport inhibitor; K(i) for binding to the serotonin transporter = 0.18 nM (K(i) values for binding to the norepinephrine and dopamine transporters = 4.6 and 2.1 microM, respectively). In platelet serotonin uptake studies BMS-505130 (5 mg/kg, p.o.) produced a robust inhibition of serotonin uptake. In microdialysis studies oral dosing with BMS-505130 produced a dose-dependent increase in cortical serotonin levels that reached a maximal effect of 200% above baseline at a dose of 1 mg/kg, p.o.; the peak serotonin response was transient in nature. Following oral administration, peak plasma concentrations of BMS-505130 reached Tmax at 1.6 +/- 0.7 h and then declined to concentrations <10% of Cmax within the following 6 h; plasma half-life following i.v. dosing was 0.46 +/- 0.02 h. Parallel microdialysis and pharmacokinetic studies revealed that changes in serotonin levels in the cortex mirrored changes in the brain concentration of BMS-505130. In a behavioral assay known to be sensitive to selective serotonin reuptake inhibitors (SSRIs), mouse tail suspension, BMS-505130 produced a robust response after either oral or intraperitoneal dosing. BMS-505130 exhibits a pharmacological, neurochemical and behavioral profile consistent with a potent SSRI. Moreover, BMS-505130s short half-life may be advantageous for the treatment of premature ejaculation where an acute effect to delay ejaculation followed by a relatively rapid fall in SSRI plasma concentrations might be desirable.

Collaboration


Dive into the Nicholas J. Lodge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge