Nicholas J. Schaub
Rensselaer Polytechnic Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas J. Schaub.
Journal of Neural Engineering | 2011
Nicholas J. Schaub; Ryan J. Gilbert
Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.
Journal of Neurotrauma | 2016
Nicholas J. Schaub; Christopher Johnson; Blair Cooper; Ryan J. Gilbert
Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications. Electrospun fibers robustly support axonal regeneration within in vivo rodent models of spinal cord injury. These findings suggest the possibility of their eventual use within patients. Indeed, both spinal cord and peripheral nervous system regeneration research over the last several years shows that physical guidance cues induce recovery of limb, respiration, or bladder control in rodent models. Electrospun fibers may be an alternative to the peripheral nerve graft (PNG), because PNG autografts injure the patient and are limited in supply, and allografts risk host rejection. In addition, electrospun fibers can be engineered easily to confront new therapeutic challenges. Fibers can be modified to release therapies locally or can be physically modified to direct neural stem cell differentiation. This review summarizes the major findings and trends in the last decade of research, with a particular focus on spinal cord injury. This review also demonstrates how electrospun fibers can be used to study the central nervous system in vitro.
ACS Applied Materials & Interfaces | 2014
Christopher A. McKay; Rebecca D. Pomrenke; Joshua S. McLane; Nicholas J. Schaub; Elise K. DeSimone; Lee A. Ligon; Ryan J. Gilbert
Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca2+ results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca2+ concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca2+ to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca2+ concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca2+-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression compared to astrocytes cultured on glass. Thus, alginate/chitosan/genipin hydrogel composites show promise as scaffolds that regulate astrocyte behavior and for the prevention of Ca2+-related secondary neuron damage during acute SCI.
ACS Applied Materials & Interfaces | 2013
Nicholas J. Schaub; Tara Britton; Rupak M. Rajachar; Ryan J. Gilbert
In this study, we created a new method of electrospinning capable of controlling the surface structure of individual fibers (fiber nanotopography). The nanotopographical features were created by a phase separation in the fibers as they formed. To control the phase separation, a nonsolvent (a chemical insoluble with the polymer) was added to an electrospinning solution containing poly-l-lactic acid (PLLA) and chloroform. The nanotopography of electrospun fibers in the PLLA/chloroform solution was smooth. However, adding a small weight (<2% of total solution) of a single nonsolvent (water, ethanol, or dimethyl sulfoxide) generated nanoscale depressions on the surface of the fibers unique to the nonsolvent added. Additionally, nanoscale depressions on electrospun fibers were observed to change with dimethyl sulfoxide (DMSO) concentration in the PLLA/chloroform solution. A nonlinear relationship was found between the concentration of DMSO and the number and size of nanotopographical features. The surface depressions did not alter the hydrophobicity of the scaffold or degradation of the scaffold over a two-day period. To determine if fiber nanotopography altered cell behavior, macrophages (RAW 264.7 cells) were cultured on fibers with a smooth nanotopography or fibers with nanoscale depressions. RAW 264.7 cells spread less on fibers with nanoscale depressions than fibers with a smooth topography (p<0.05), but there were no differences between groups with regard to cell metabolism or the number of adherent cells. The results of this study demonstrate the necessity to consider the nanotopography of individual fibers as these features may affect cellular behavior. More importantly, we demonstrate a versatile method of controlling electrospun fiber nanotopography.
PLOS ONE | 2015
Nicholas J. Schaub; Clémentine Le Beux; Jianjun Miao; Robert J. Linhardt; Johan Alauzun; Danielle Laurencin; Ryan J. Gilbert
The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used.
Journal of Materials Chemistry B | 2016
Saad Sene; Joshua S. McLane; Nicholas J. Schaub; Sylvie Bégu; P. Hubert Mutin; Lee A. Ligon; Ryan J. Gilbert; Danielle Laurencin
Benzoxaboroles are a family of organoboron molecules, which have been finding over the past few years an increasing number of biological applications, notably for the design of new drugs. Given that these molecules are still relatively new in the biomedical context, very few investigations regarding their formulation have been reported to date. Here, a complete study on the formulation of benzoxaboroles in a biopolymer, poly-l-lactic acid (PLLA), is reported. The incorporation of two small benzoxaboroles, namely the simplest benzoxaborole molecule (BBzx) and the antifungal drug tavaborole (AN2690), inside PLLA films was investigated. Different variations in the film composition and texture were looked into, by performing a heat-treatment on the PLLA films, or by preparing PLLA-PEO (polyethylene oxide) blends or PLLA-LDH (layered double hydroxide) composites. In each case, the impact of these changes in formulation on the local environment of the benzoxaboroles in the material (as determined by multinuclear solid state NMR), and on the kinetics of release in physiological media were analyzed, showing that a variety of release profiles could be achieved. Finally, cellular assays were carried out looking at the migration of MDA-MB-231 cancer cells. These tests revealed for the first time that benzoxaboroles like AN2690 and BBzx inhibited the migration of these cells. Moreover, the molecules incorporated in the films were found to remain active, and their effect on cancer cells was directly related to the release kinetics from the films. All in all, PLLA-based materials appear as highly versatile and attractive matrices for formulating benzoxaborole-based drugs.
Chemical Research in Toxicology | 2014
Nicholas J. Schaub; Deniz Rende; Yuan Yuan; Ryan J. Gilbert; Diana-Andra Borca-Tasciuc
Superparamagnetic iron oxide nanoparticles (SPIONs) can generate heat when subjected to an alternating magnetic field (AMF). In the European Union, SPIONs actuated by AMF are used in hyperthermia treatment of glioblastoma multiforme, an aggressive form of brain cancer. Current data from clinical trials suggest that this therapy improves patient life expectancy, but their effect on healthy brain cells is virtually unknown. Thus, a viability study involving SPIONs subjected to an AMF was carried out on healthy cortical rat astrocytes, the most abundant cell type in the mammalian brain. The cells were cultured with aminosilane- or starch-coated SPIONs with or without application of an AMF. Significant cell death (p < 0.05) was observed only when SPIONs were added to astrocyte cultures and subjected to an AMF. Unexpectedly, the decrease in astrocyte viability was observed at physiological temperatures (34-40 °C) with AMF. A further decrease in astrocyte viability was found only when bulk temperatures exceeded 45 °C. To discern differences in the astrocyte structure when astrocytes were cultured with particles with or without AMF, scanning electron microscopy (SEM) was performed. SEM images revealed a change in the structure of the astrocyte cell membrane only when astrocytes were cultured with SPIONs and actuated with an AMF. This study is the first to report that astrocyte death occurs at physiological temperatures in the presence of magnetic particles and AMF, suggesting that other mechanisms are responsible for inducing astrocyte death in addition to heat.
Methods of Molecular Biology | 2013
Joshua S. McLane; Nicholas J. Schaub; Ryan J. Gilbert; Lee A. Ligon
It has become increasingly clear that the cellular microenvironment, in particular the extracellular matrix, plays an important role in regulating cell function. However, the extracellular matrix is extraordinarily complex in both its makeup and its physical properties. Therefore, there is a need to develop model systems to independently evaluate the effect of specific extracellular matrix features upon cells. Here we describe a model system to evaluate one aspect of the extracellular matrix, its fibrous topology. We describe how to generate bio-mimetic nanofibers by electrospinning, how to grow cells on these fibers, and also some methods for fixing and visualizing cells grown on these fibers. These methods can be used to investigate a wide range of biological questions, including, but not limited to, cell-extracellular matrix adhesion and cell motility on extracellular matrix.
Journal of Biomaterials Science-polymer Edition | 2017
Nicholas J. Schaub; Anthony R. D’Amato; Andrew K. Mason; David T. Corr; Erin Y. Harmon; Michelle R. Lennartz; Ryan J. Gilbert
Abstract Currently, it is unknown how the mechanical properties of electrospun fibers, and the presentation of surface nanotopography influence macrophage gene expression and protein production. By further elucidating how specific fiber properties (mechanical properties or surface properties) alter macrophage behavior, it may be possible to create electrospun fiber scaffolds capable of initiating unique cellular and tissue responses. In this study, we determined the elastic modulus and rigidity of fibers with varying topographies created by finely controlling humidity and including a non-solvent during electrospinning. In total,five fiber scaffold types were produced. Analysis of fiber physical properties demonstrated no change in fiber diameter amongst the five different fiber groups. However, the four different fibrous scaffolds with nanopits or divots each possessed different numbers of pits with different nanoscale dimensions. Unpolarized bone marrow derived murine macrophages (M0), macrophages polarized towards a pro-inflammatory phenotype (M1), or macrophages polarized towards anti-inflammatory phenotype (M2b) were placed onto each of the scaffolds and cytokine RNA expression and protein production were analyzed. Specific nanotopographies did not appreciably alter cytokine production from undifferentiated macrophages (M0) or anti-inflammatory macrophages (M2b), but a specific fiber (with many small pits) did increase IL-12 transcript and IL-12 protein production compared to fibers with small divots. When analyzing the mechanical properties between fibers with divots or with many small pits,divoted fibers possessed similar elastic moduli but different stiffness values. In total,we present techniques capable of creating unique electrospun fibers. These unique fibers have varying fiber mechanical characteristics and modestly modulate macrophage cytokine expression.
Proceedings of SPIE | 2011
Nicholas J. Schaub; Ryan J. Gilbert; Sean J. Kirkpatrick
Aligned, electrospun fibers have been used in a wide variety of applications from filters to scaffolds for tissue engineering. In this study we demonstrate a quick and accurate method to quantify fiber alignment using the Radon Transform. To test the accuracy of this method, we generated mock images fibers with varying degrees of fiber alignment. Images were filtered to detect edges and analyzed with the Radon Transform from 1 to 180 degrees at 1 degree intervals. The absolute values of each column were summed and used to create a normalized probability distribution function. The probability distribution function was quantified using both the full width half- maximum (FWHM) and calculating the entropy of the function. These results were compared to an analysis method using the fast Fourier transform. The FWHM for the Radon transform was consistent and statistically different at all fiber orientations for different degrees of fiber variation. Both the entropy analysis for the Radon transform and the FWHM for the fast Fourier transform did not show statistical difference. The FWHM method for the radon transform was performed on electrospun fibers and showed statistical difference between two groups known to be statistically different by manual analysis.