Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Talbot is active.

Publication


Featured researches published by Nicholas J. Talbot.


Nature | 2005

The genome sequence of the rice blast fungus Magnaporthe grisea

Ralph A. Dean; Nicholas J. Talbot; Daniel J. Ebbole; Mark L. Farman; Thomas K. Mitchell; Marc J. Orbach; Michael R. Thon; Resham Kulkarni; Jin-Rong Xu; Huaqin Pan; Nick D. Read; Yong-Hwan Lee; Ignazio Carbone; Doug Brown; Yeon Yee Oh; Nicole M. Donofrio; Jun Seop Jeong; Darren M. Soanes; Slavica Djonović; Elena Kolomiets; Cathryn J. Rehmeyer; Weixi Li; Michael Harding; Soonok Kim; Marc-Henri Lebrun; Heidi U. Böhnert; Sean Coughlan; Jonathan Butler; Sarah E. Calvo; Li-Jun Ma

Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation.


PLOS Genetics | 2011

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

Joelle Amselem; Christina A. Cuomo; Jan A. L. van Kan; Muriel Viaud; Ernesto P. Benito; Arnaud Couloux; Pedro M. Coutinho; Ronald P. de Vries; Paul S. Dyer; Sabine Fillinger; Elisabeth Fournier; Lilian Gout; Matthias Hahn; Linda T. Kohn; Nicolas Lapalu; Kim M. Plummer; Jean-Marc Pradier; Emmanuel Quévillon; Amir Sharon; Adeline Simon; Arjen ten Have; Bettina Tudzynski; Paul Tudzynski; Patrick Wincker; Marion Andrew; Véronique Anthouard; Ross E. Beever; Rolland Beffa; Isabelle Benoit; Ourdia Bouzid

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Science | 2010

Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism

Pietro D. Spanu; James Abbott; Joelle Amselem; Timothy A. Burgis; Darren M. Soanes; Kurt Stüber; Emiel Ver Loren van Themaat; J. K. M. Brown; Sarah Butcher; Sarah J. Gurr; Marc-Henri Lebrun; Christopher J. Ridout; Paul Schulze-Lefert; Nicholas J. Talbot; Nahal Ahmadinejad; Christian Ametz; Geraint Barton; Mariam Benjdia; Przemyslaw Bidzinski; Laurence V. Bindschedler; Maike Both; Marin Talbot Brewer; Lance Cadle-Davidson; Molly M. Cadle-Davidson; Jérôme Collemare; Rainer Cramer; Omer Frenkel; Dale I. Godfrey; James Harriman; Claire Hoede

From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.


Nature Reviews Microbiology | 2009

Under pressure: investigating the biology of plant infection by Magnaporthe oryzae

Richard A. Wilson; Nicholas J. Talbot

The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentiation of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is sufficient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae. We also look ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.


Nature | 1997

Glycerol generates turgor in rice blast

J.C. de Jong; B.J. McCormack; Nicholas Smirnoff; Nicholas J. Talbot

Many plant pathogenic fungi are able to penetrate the cuticles of their host plants by elaborating specialized cells known as appressoria. The morphology and development of appressoria have been well studied, but little is known about how these cells are able to breach the tough plant surface. We have now found that the appressoria of rice blast fungus (Magnaporthe grisea) use glycerol to generate pressure which ruptures plant cuticles.


The Plant Cell | 2000

MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea.

Eckhard Thines; Roland W.S. Weber; Nicholas J. Talbot

Magnaporthe grisea produces an infection structure called an appressorium, which is used to breach the plant cuticle by mechanical force. Appressoria generate hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control and biochemical mechanism for turgor generation, we assayed glycerol biosynthetic enzymes during appressorium development, and the movement of storage reserves was monitored in developmental mutants. Enzymatic activities for glycerol generation from carbohydrate sources were present in appressoria but did not increase during development. In contrast, triacylglycerol lipase activity increased during appressorium maturation. Rapid glycogen degradation occurred during conidial germination, followed by accumulation in incipient appressoria and dissolution before turgor generation. Lipid droplets also moved to the incipient appressorium and coalesced into a central vacuole before degrading at the onset of turgor generation. Glycogen and lipid mobilization did not occur in a Δpmk1 mutant, which lacked the mitogen-activated protein kinase (MAPK) required for appressorium differentiation, and was retarded markedly in a ΔcpkA mutant, which lacks the catalytic subunit of cAMP-dependent protein kinase A (PKA). Glycogen and lipid degradation were very rapid in a Δmac1 sum1-99 mutant, which carries a mutation in the regulatory subunit of PKA, occurring before appressorium morphogenesis was complete. Mass transfer of storage carbohydrate and lipid reserves to the appressorium therefore occurs under control of the PMK1 MAPK pathway. Turgor generation then proceeds by compartmentalization and rapid degradation of lipid and glycogen reserves under control of the CPKA/SUM1-encoded PKA holoenzyme.


The Plant Cell | 1996

MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea.

Nicholas J. Talbot; Michael J. Kershaw; Gavin E. Wakley; Onno M. H. de Vries; Joseph G. H. Wessels; John E. Hamer

The rice blast fungus expresses a pathogenicity gene, MPG1, during appressorium formation, disease symptom development, and conidiation. The MPG1 gene sequence predicts a small protein belonging to a family of fungal proteins designated hydrophobins. Using random ascospore analysis and genetic complementation, we showed that MPG1 is necessary for infection-related development of Magnaporthe grisea on rice leaves and for full pathogenicity toward susceptible rice cultivars. The protein product of MPG1 appears to interact with hydrophobic surfaces, where it may act as a developmental sensor for appressorium formation. Ultrastructural studies revealed that MPG1 directs formation of a rodlet layer on conidia composed of interwoven ~5-nm rodlets, which contributes to their surface hydrophobicity. Using combined genetic and biochemical approaches, we identified a 15-kD secreted protein with characteristics that establish it as a class I hydrophobin. The protein is able to form detergent-insoluble high molecular mass complexes, is soluble in trifluoroacetic acid, and exhibits mobility shifts after treatment with performic acid. The production of this protein is directed by MPG1.


The Plant Cell | 1999

Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea

Katherine P. Dixon; Jin-Rong Xu; Nicholas Smirnoff; Nicholas J. Talbot

The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase–encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea Δosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the Δosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease

Martin J. Egan; Zhengyi Wang; Mark A. Jones; Nicholas Smirnoff; Nicholas J. Talbot

One of the first responses of plants to microbial attack is the production of extracellular superoxide surrounding infection sites. Here, we report that Magnaporthe grisea, the causal agent of rice blast disease, undergoes an oxidative burst of its own during plant infection, which is associated with its development of specialized infection structures called appressoria. Scavenging of these oxygen radicals significantly delayed the development of appressoria and altered their morphology. We targeted two superoxide-generating NADPH oxidase-encoding genes, Nox1 and Nox2, and demonstrated genetically, that each is independently required for pathogenicity of M. grisea. Δnox1 and Δnox2 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. The initiation of rice blast disease therefore requires production of superoxide by the invading pathogen.


The Plant Cell | 2012

Effector-Mediated Suppression of Chitin-Triggered Immunity by Magnaporthe oryzae Is Necessary for Rice Blast Disease

Thomas A. Mentlak; Anja Kombrink; Tomonori Shinya; Lauren S. Ryder; Ippei Otomo; Hiromasa Saitoh; Ryohei Terauchi; Yoko Nishizawa; Naoto Shibuya; Bart P. H. J. Thomma; Nicholas J. Talbot

This work shows that the rice blast fungus secretes a protein that can suppress plant defenses by affecting the way in which chitin, a component of fungal cell walls, is perceived by the rice plant. Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.

Collaboration


Dive into the Nicholas J. Talbot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

It Sharpe

Royal Devon and Exeter Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Mitchell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Yan

University of Exeter

View shared research outputs
Researchain Logo
Decentralizing Knowledge