Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Jing Yuan is active.

Publication


Featured researches published by Nicholas Jing Yuan.


international conference on data engineering | 2013

On discovery of gathering patterns from trajectories

Kai Zheng; Yu Zheng; Nicholas Jing Yuan; Shuo Shang

The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modelling various group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically involve large congregations of individuals, which form durable and stable areas with high density. Since the process of discovering gathering patterns over large-scale trajectory databases can be quite lengthy, we further develop a set of well thought out techniques to improve the performance. These techniques, including effective indexing structures, fast pattern detection algorithms implemented with bit vectors, and incremental algorithms for handling new trajectory arrivals, collectively constitute an efficient solution for this challenging task. Finally, the effectiveness of the proposed concepts and the efficiency of the approaches are validated by extensive experiments based on a real taxicab trajectory dataset.


IEEE Transactions on Knowledge and Data Engineering | 2015

Discovering Urban Functional ZonesUsing Latent Activity Trajectories

Nicholas Jing Yuan; Yu Zheng; Xing Xie; Yingzi Wang; Kai Zheng; Hui Xiong

The step of urbanization and modern civilization fosters different functional zones in a city, such as residential areas, business districts, and educational areas. In a metropolis, people commute between these functional zones every day to engage in different socioeconomic activities, e.g., working, shopping, and entertaining. In this paper, we propose a data-driven framework to discover functional zones in a city. Specifically, we introduce the concept of latent activity trajectory (LAT), which captures socioeconomic activities conducted by citizens at different locations in a chronological order. Later, we segment an urban area into disjointed regions according to major roads, such as highways and urban expressways. We have developed a topic-modeling-based approach to cluster the segmented regions into functional zones leveraging mobility and location semantics mined from LAT. Furthermore, we identify the intensity of each functional zone using Kernel Density Estimation. Extensive experiments are conducted with several urban scale datasets to show that the proposed framework offers a powerful ability to capture city dynamics and provides valuable calibrations to urban planners in terms of functional zones.


international conference on data engineering | 2013

Towards efficient search for activity trajectories

Kai Zheng; Shuo Shang; Nicholas Jing Yuan; Yi Yang

The advances in location positioning and wireless communication technologies have led to a myriad of spatial trajectories representing the mobility of a variety of moving objects. While processing trajectory data with the focus of spatio-temporal features has been widely studied in the last decade, recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given a sequence of query locations, each associated with a set of desired activities, an activity trajectory similarity query (ATSQ) returns k trajectories that cover the query activities and yield the shortest minimum match distance. An order-sensitive activity trajectory similarity query (OATSQ) is also proposed to take into account the order of the query locations. To process the queries efficiently, we firstly develop a novel hybrid grid index, GAT, to organize the trajectory segments and activities hierarchically, which enables us to prune the search space by location proximity and activity containment simultaneously. In addition, we propose algorithms for efficient computation of the minimum match distance and minimum order-sensitive match distance, respectively. The results of our extensive empirical studies based on real online check-in datasets demonstrate that our proposed index and methods are capable of achieving superior performance and good scalability.


IEEE Transactions on Knowledge and Data Engineering | 2014

Online Discovery of Gathering Patterns over Trajectories

Kai Zheng; Yu Zheng; Nicholas Jing Yuan; Shuo Shang; Xiaofang Zhou

The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviors can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modeling various group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically involve large congregations of individuals, which form durable and stable areas with high density. In this work, we first develop a set of novel techniques to tackle the challenge of efficient discovery of gathering patterns on archived trajectory dataset. Afterwards, since trajectory databases are inherently dynamic in many real-world scenarios such as traffic monitoring, fleet management and battlefield surveillance, we further propose an online discovery solution by applying a series of optimization schemes, which can keep track of gathering patterns while new trajectory data arrive. Finally, the effectiveness of the proposed concepts and the efficiency of the approaches are validated by extensive experiments based on a real taxicab trajectory dataset.


conference on online social networks | 2013

We know how you live: exploring the spectrum of urban lifestyles

Nicholas Jing Yuan; Fuzheng Zhang; Defu Lian; Kai Zheng; Siyu Yu; Xing Xie

An incisive understanding of human lifestyles is not only essential to many scientific disciplines, but also has a profound business impact for targeted marketing. In this paper, we present LifeSpec, a computational framework for exploring and hierarchically categorizing urban lifestyles. Specifically, we have developed an algorithm to connect multiple social network accounts of millions of individuals and collect their publicly available heterogeneous behavioral data as well as social links. In addition, a nonparametric Bayesian approach is developed to model the lifestyle spectrum of a group of individuals. To demonstrate the effectiveness of LifeSpec, we conducted extensive experiments and case studies, with a large dataset we collected covering 1 million individuals from 493 cities. Our results suggest that LifeSpec offers a powerful paradigm for 1) revealing an individuals lifestyle from multiple dimensions, and 2) uncovering lifestyle commonalities and variations of a group with various demographic attributes, such as vocation, education, gender, sexual orientation, and place of residence. The proposed method provides emerging implications for personalized recommendation and targeted advertising.


ACM Transactions on Intelligent Systems and Technology | 2015

CEPR: A Collaborative Exploration and Periodically Returning Model for Location Prediction

Defu Lian; Xing Xie; Vincent W. Zheng; Nicholas Jing Yuan; Fuzheng Zhang; Enhong Chen

With the growing popularity of location-based social networks, numerous location visiting records (e.g., check-ins) continue to accumulate over time. The more these records are collected, the better we can understand users’ mobility patterns and the more accurately we can predict their future locations. However, due to the personality trait of neophilia, people also show propensities of novelty seeking in human mobility, that is, exploring unvisited but tailored locations for them to visit. As such, the existing prediction algorithms, mainly relying on regular mobility patterns, face severe challenges because such behavior is beyond the reach of regularity. As a matter of fact, the prediction of this behavior not only relies on the forecast of novelty-seeking tendency but also depends on how to determine unvisited candidate locations. To this end, we put forward a Collaborative Exploration and Periodically Returning model (CEPR), based on a novel problem, Exploration Prediction (EP), which forecasts whether people will seek unvisited locations to visit, in the following. When people are predicted to do exploration, a state-of-the-art recommendation algorithm, armed with collaborative social knowledge and assisted by geographical influence, will be applied for seeking the suitable candidates; otherwise, a traditional prediction algorithm, incorporating both regularity and the Markov model, will be put into use for figuring out the most possible locations to visit. We then perform case studies on check-ins and evaluate them on two large-scale check-in datasets with 6M and 36M records, respectively. The evaluation results show that EP achieves a roughly 20p classification error rate on both datasets, greatly outperforming the baselines, and that CEPR improves performances by as much as 30p compared to the traditional location prediction algorithms.


ACM Transactions on Intelligent Systems and Technology | 2015

Sensing the Pulse of Urban Refueling Behavior: A Perspective from Taxi Mobility

Fuzheng Zhang; Nicholas Jing Yuan; David Wilkie; Yu Zheng; Xing Xie

Urban transportation is an important factor in energy consumption and pollution, and is of increasing concern due to its complexity and economic significance. Its importance will only increase as urbanization continues around the world. In this article, we explore drivers’ refueling behavior in urban areas. Compared to questionnaire-based methods of the past, we propose a complete data-driven system that pushes towards real-time sensing of individual refueling behavior and citywide petrol consumption. Our system provides the following: detection of individual refueling events (REs) from which refueling preference can be analyzed; estimates of gas station wait times from which recommendations can be made; an indication of overall fuel demand from which macroscale economic decisions can be made, and a spatial, temporal, and economic view of urban refueling characteristics. For individual behavior, we use reported trajectories from a fleet of GPS-equipped taxicabs to detect gas station visits. For time spent estimates, to solve the sparsity issue along time and stations, we propose context-aware tensor factorization (CATF), a factorization model that considers a variety of contextual factors (e.g., price, brand, and weather condition) that affect consumers’ refueling decision. For fuel demand estimates, we apply a queue model to calculate the overall visits based on the time spent inside the station. We evaluated our system on large-scale and real-world datasets, which contain 4-month trajectories of 32,476 taxicabs, 689 gas stations, and the self-reported refueling details of 8,326 online users. The results show that our system can determine REs with an accuracy of more than 90%, estimate time spent with less than 2 minutes of error, and measure overall visits in the same order of magnitude with the records in the field study.


international world wide web conferences | 2014

Mining novelty-seeking trait across heterogeneous domains

Fuzheng Zhang; Nicholas Jing Yuan; Defu Lian; Xing Xie

An incisive understanding of personal psychological traits is not only essential to many scientific disciplines, but also has a profound business impact on online recommendation. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior. In this paper, we focus on understanding individual novelty-seeking trait embodied at different levels and across heterogeneous domains. Unlike the questionnaire-based methods widely adopted in the past, we first present a computational framework, Novel Seeking Model (NSM), for exploring the novelty-seeking trait implied by observable activities. Then, we explore the novelty-seeking trait in two heterogeneous domains: check-in behavior in location based social networks, which reflects mobility patterns in the physical world, and online shopping behavior on e-commerce sites, which reflects consumption concepts in economic activities. To demonstrate the effectiveness of NSM, we conducted extensive experiments, with a large dataset covering the two-domain activities for hundreds of thousands of individuals. Our results suggest that NSM offers a powerful paradigm for 1) presenting an effective measurement of a personality trait that can explicitly explain the deviation of individuals from the habits of individuals and crowds; 2) uncovering the correlation of novelty-seeking trait at different levels and across heterogeneous domains. The proposed method provides emerging implications for personalized cross-domain recommendation and targeted advertising.


international conference on data engineering | 2015

Making sense of trajectory data: A partition-and-summarization approach

Han Su; Kai Zheng; Kai Zeng; Jiamin Huang; Shazia Wasim Sadiq; Nicholas Jing Yuan; Xiaofang Zhou

Due to the prevalence of GPS-enabled devices and wireless communication technology, spatial trajectories that describe the movement history of moving objects are being generated and accumulated at an unprecedented pace. However, a raw trajectory in the form of sequence of timestamped locations does not make much sense for humans without semantic representation. In this work we aim to facilitate humans understanding of a raw trajectory by automatically generating a short text to describe it. By formulating this task as the problem of adaptive trajectory segmentation and feature selection, we propose a partition-and-summarization framework. In the partition phase, we first define a set of features for each trajectory segment and then derive an optimal partition with the aim to make the segments within each partition as homogeneous as possible in terms of their features. In the summarization phase, for each partition we select the most interesting features by comparing against the common behaviours of historical trajectories on the same route and generate short text description for these features. For empirical study, we apply our solution to a real trajectory dataset and have found that the generated text can effectively reflect the important parts in a trajectory.


ACM Transactions on Intelligent Systems and Technology | 2016

Relevance Meets Coverage: A Unified Framework to Generate Diversified Recommendations

Le Wu; Qi Liu; Enhong Chen; Nicholas Jing Yuan; Guangming Guo; Xing Xie

Collaborative filtering (CF) models offer users personalized recommendations by measuring the relevance between the active user and each individual candidate item. Following this idea, user-based collaborative filtering (UCF) usually selects the local popular items from the like-minded neighbor users. However, these traditional relevance-based models only consider the individuals (i.e., each neighbor user and candidate item) separately during neighbor set selection and recommendation set generation, thus usually incurring highly similar recommendations that lack diversity. While many researchers have recognized the importance of diversified recommendations, the proposed solutions either needed additional semantic information of items or decreased accuracy in this process. In this article, we describe how to generate both accurate and diversified recommendations from a new perspective. Along this line, we first introduce a simple measure of coverage that quantifies the usefulness of the whole set, that is, the neighbor userset and the recommended itemset as a complete entity. Then we propose a recommendation framework named REC that considers both traditional relevance-based scores and the new coverage measure based on UCF. Under REC, we further prove that the goals of maximizing relevance and coverage measures simultaneously in both the neighbor set selection step and the recommendation set generation step are NP-hard. Luckily, we can solve them effectively and efficiently by exploiting the inherent submodular property. Furthermore, we generalize the coverage notion and the REC framework from both a data perspective and an algorithm perspective. Finally, extensive experimental results on three real-world datasets show that the REC-based recommendation models can naturally generate more diversified recommendations without decreasing accuracy compared to some state-of-the-art models.

Collaboration


Dive into the Nicholas Jing Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Defu Lian

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Kai Zheng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Enhong Chen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingzi Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Sun

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge