Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Katsanis is active.

Publication


Featured researches published by Nicholas Katsanis.


Nature Genetics | 2005

A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2

Bart Loeys; Junji Chen; Enid Neptune; Daniel P. Judge; Megan Podowski; Tammy Holm; Jennifer Meyers; Carmen C. Leitch; Nicholas Katsanis; Neda Sharifi; F. Lauren Xu; Loretha Myers; Philip J. Spevak; Duke E. Cameron; Julie De Backer; Jan Hellemans; Yan Chen; Elaine C. Davis; Catherine L. Webb; Wolfram Kress; Paul Coucke; Daniel B. Rifkin; Anne De Paepe; Harry C. Dietz

We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor β receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFβ signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFβ signaling. These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.


Cell | 2004

Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene.

Jin Billy Li; Jantje M. Gerdes; Courtney J. Haycraft; Yanli Fan; Tanya M. Teslovich; Helen May-Simera; Haitao Li; Oliver E. Blacque; Linya Li; Carmen C. Leitch; Ra Lewis; Jane Green; Patrick S. Parfrey; Michel R. Leroux; William S. Davidson; Philip L. Beales; Lisa M. Guay-Woodford; Bradley K. Yoder; Gary D. Stormo; Nicholas Katsanis; Susan K. Dutcher

Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the nonflagellated proteome of Arabidopsis from the shared proteome of the ciliated/flagellated organisms Chlamydomonas and human. We identified 688 genes that are present exclusively in organisms with flagella and basal bodies and validated these data through a series of in silico, in vitro, and in vivo studies. We then applied this resource to the study of human ciliation disorders and have identified BBS5, a novel gene for Bardet-Biedl syndrome. We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella.


Nature | 2003

Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome

Stephen J. Ansley; Jose L. Badano; Oliver E. Blacque; Josephine Hill; Bethan E. Hoskins; Carmen C. Leitch; Jun Chul Kim; Alison Ross; Erica R. Eichers; Tanya M. Teslovich; Allan K. Mah; Robert C. Johnsen; John C. Cavender; Richard Alan Lewis; Michel R. Leroux; Philip L. Beales; Nicholas Katsanis

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells. We have cloned a new BBS gene, BBS8, which encodes a protein with a prokaryotic domain, pilF, involved in pilus formation and twitching mobility. In one family, a homozygous null BBS8 mutation leads to BBS with randomization of left–right body axis symmetry, a known defect of the nodal cilium. We have also found that BBS8 localizes specifically to ciliated structures, such as the connecting cilium of the retina and columnar epithelial cells in the lung. In cells, BBS8 localizes to centrosomes and basal bodies and interacts with PCM1, a protein probably involved in ciliogenesis. Finally, we demonstrate that all available Caenorhabditis elegans BBS homologues are expressed exclusively in ciliated neurons, and contain regulatory elements for RFX, a transcription factor that modulates the expression of genes associated with ciliogenesis and intraflagellar transport.


Cell | 2009

The Vertebrate Primary Cilium in Development, Homeostasis, and Disease

Jantje M. Gerdes; Erica E. Davis; Nicholas Katsanis

Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


Nature Genetics | 2004

The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression

Jun Chul Kim; Jose L. Badano; Sonja Sibold; Muneer A. Esmail; Josephine Hill; Bethan E. Hoskins; Carmen C. Leitch; Kerrie Venner; Stephen J. Ansley; Alison Ross; Michel R. Leroux; Nicholas Katsanis; Philip L. Beales

BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150glued subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration.


Nature Genetics | 2007

Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response

Jantje M. Gerdes; Yangfan Liu; Norann A. Zaghloul; Carmen C. Leitch; Shaneka S Lawson; Masaki Kato; Philip A. Beachy; Philip L. Beales; Shannon Fisher; Jose L. Badano; Nicholas Katsanis

Primary cilia and basal bodies are evolutionarily conserved organelles that mediate communication between the intracellular and extracellular environments. Here we show that bbs1, bbs4 and mkks (also known as bbs6), which encode basal body proteins, are required for convergence and extension in zebrafish and interact with wnt11 and wnt5b. Suppression of bbs1, bbs4 and mkks transcripts results in stabilization of β-catenin with concomitant upregulation of T-cell factor (TCF)-dependent transcription in both zebrafish embryos and mammalian ciliated cells, a defect phenocopied by the silencing of the axonemal kinesin subunit KIF3A but not by chemical disruption of the cytoplasmic microtubule network. These observations are attributable partly to defective degradation by the proteasome; suppression of BBS4 leads to perturbed proteasomal targeting and concomitant accumulation of cytoplasmic β-catenin. Cumulatively, our data indicate that the basal body is an important regulator of Wnt signal interpretation through selective proteolysis and suggest that defects in this system may contribute to phenotypes pathognomonic of human ciliopathies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)

Benjamin M. Neale; Jesen Fagerness; Robyn Reynolds; Lucia Sobrin; Margaret M. Parker; Soumya Raychaudhuri; Perciliz L. Tan; Edwin C. Oh; Joanna E. Merriam; Eric H. Souied; Paul S. Bernstein; Binxing Li; Jeanne M. Frederick; Kang Zhang; Milam A. Brantley; Aaron Y. Lee; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; Stephan Ripke; R. Theodore Smith; Gaetano R. Barile; Nicholas Katsanis; Rando Allikmets; Mark J. Daly; Johanna M. Seddon

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Nature Genetics | 2008

Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome

Carmen C. Leitch; Norann A. Zaghloul; Erica E. Davis; Corinne Stoetzel; Anna Diaz-Font; Suzanne Rix; Majid Alfadhel; Richard Alan Lewis; Wafaa Eyaid; Eyal Banin; Hélène Dollfus; Philip L. Beales; Jose L. Badano; Nicholas Katsanis

Meckel-Gruber syndrome (MKS) is a genetically heterogeneous, neonatally lethal malformation and the most common form of syndromic neural tube defect (NTD). To date, several MKS-associated genes have been identified whose protein products affect ciliary function. Here we show that mutations in MKS1, MKS3 and CEP290 (also known as NPHP6) either can cause Bardet-Biedl syndrome (BBS) or may have a potential epistatic effect on mutations in known BBS-associated loci. Five of six families with both MKS1 and BBS mutations manifested seizures, a feature that is not a typical component of either syndrome. Functional studies in zebrafish showed that mks1 is necessary for gastrulation movements and that it interacts genetically with known bbs genes. Similarly, we found two families with missense or splice mutations in MKS3, in one of which the affected individual also bears a homozygous nonsense mutation in CEP290 that is likely to truncate the C terminus of the protein. These data extend the genetic stratification of ciliopathies and suggest that BBS and MKS, although distinct clinically, are allelic forms of the same molecular spectrum.


Nature Genetics | 2004

Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse

Heather M. Kulaga; Carmen C. Leitch; Erica R. Eichers; Jose L. Badano; Alysa Lesemann; Bethan E. Hoskins; James R. Lupski; Philip L. Beales; Randall R. Reed; Nicholas Katsanis

Defects in cilia are associated with several human disorders, including Kartagener syndrome, polycystic kidney disease, nephronophthisis and hydrocephalus. We proposed that the pleiotropic phenotype of Bardet-Biedl syndrome (BBS), which encompasses retinal degeneration, truncal obesity, renal and limb malformations and developmental delay, is due to dysfunction of basal bodies and cilia. Here we show that individuals with BBS have partial or complete anosmia. To test whether this phenotype is caused by ciliary defects of olfactory sensory neurons, we examined mice with deletions of Bbs1 or Bbs4. Loss of function of either BBS protein affected the olfactory, but not the respiratory, epithelium, causing severe reduction of the ciliated border, disorganization of the dendritic microtubule network and trapping of olfactory ciliary proteins in dendrites and cell bodies. Our data indicate that BBS proteins have a role in the microtubule organization of mammalian ciliated cells and that anosmia might be a useful determinant of other pleiotropic disorders with a suspected ciliary involvement.

Collaboration


Dive into the Nicholas Katsanis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Lupski

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge