Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas L. Payne is active.

Publication


Featured researches published by Nicholas L. Payne.


Journal of Animal Ecology | 2011

Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding

Nicholas L. Payne; Bronwyn M. Gillanders; Roger S. Seymour; Dale M. Webber; Edward P. Snelling; Jayson M. Semmens

1. Estimating the metabolic rate of animals in nature is central to understanding the physiological, behavioural and evolutionary ecology of animals. Doubly labelled water and heart-rate methods are the most commonly used approaches, but both have limitations that preclude their application to some systems. 2. Accelerometry has emerged as a powerful tool for estimating energy expenditure in a range of animals, but is yet to be used to estimate field metabolic rate in aquatic taxa. We combined two-dimensional accelerometry and swim-tunnel respirometry to estimate patterns of energy expenditure in giant Australian cuttlefish Sepia apama during breeding. 3. Both oxygen consumption rate (Vo2) and swimming speed showed strong positive associations with body acceleration, with coefficients of determination comparable to those using similar accelerometers on terrestrial vertebrates. Despite increased activity during the day, field metabolic rate rarely approached Vo2, and night-time Vo2 was similar to that at rest. 4. These results are consistent with the life-history strategy of this species, which has a poor capacity to exercise anaerobically, and a mating strategy that is visually based. With the logistical difficulties associated with observation in aquatic environments, accelerometry is likely to prove a valuable tool for estimating energy expenditure in aquatic animals.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Rain reverses diel activity rhythms in an estuarine teleost

Nicholas L. Payne; Dylan E. van der Meulen; Ruan Gannon; Jayson M. Semmens; Iain M. Suthers; Charles A. Gray; Matthew D. Taylor

Activity rhythms are ubiquitous in nature, and generally synchronized with the day–night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency.


The Journal of Experimental Biology | 2014

From physiology to physics: are we recognizing the flexibility of biologging tools?

Nicholas L. Payne; Taylor; Yuuki Y. Watanabe; Jayson M. Semmens

The remote measurement of data from free-ranging animals has been termed ‘biologging’ and in recent years this relatively small set of tools has been instrumental in addressing remarkably diverse questions – from ‘how will tuna respond to climate change?’ to ‘why are whales big?’. While a single biologging dataset can have the potential to test hypotheses spanning physiology, ecology, evolution and theoretical physics, explicit illustrations of this flexibility are scarce and this has arguably hindered the full realization of the power of biologging tools. Here we present a small set of examples from studies that have collected data on two parameters widespread in biologging research (depth and acceleration), but that have interpreted their data in the context of extremely diverse phenomena: from tests of biomechanical and diving-optimality models to identifications of feeding events, Lévy flight foraging strategies and expanding oxygen minimum zones. We use these examples to highlight the remarkable flexibility of biologging tools, and identify several mechanisms that may enhance the scope and dissemination of future biologging research programs.


Marine and Freshwater Research | 2012

Small home range in southern Australia's largest resident reef fish, the western blue groper (Achoerodus gouldii): implications for adequacy of no-take marine protected areas

Simon R. Bryars; Paul J. Rogers; Charlie Huveneers; Nicholas L. Payne; Ian Smith; Bryan McDonald

No-take marine protected areas (MPAs) represent an effective biodiversity conservation tool for a range of species including resident reef fishes that are intrinsically vulnerable to overfishing and other localised impacts. The western blue groper (Achoerodus gouldii) is the largest permanent-resident reef teleost in southern Australian waters and has the second-oldest recorded age of any labrid at 70 years. Acoustic telemetry was used to investigate whether adult A. gouldii can be effectively protected within adequately sized no-take MPAs. Ten passive acoustic receivers tracked the movements of 15 A. gouldii individuals (69–112-cm total length; 7–31-kg weight) at a site off north-western Kangaroo Island, South Australia. Most of the fish displayed high site fidelity (91–100% residence time for 10 of the 11 fish with useful data) for a narrow strip of fringing coastal reef (~1-km length by ~40-m width) throughout a 12-month period. Mean home-range along-shore length and area were estimated at 1076 ± 83 m (s.e.), and 45 188 ± 3497 m2, respectively (n = 11 fish with useful data). Comparison with other resident temperate-reef teleosts indicated no relationship between fish length and home-range area, and that A. gouldii has a relatively small home range. The high site fidelity and small home range of adult A. gouldii individuals makes localised populations amenable to a high level of protection within no-take MPAs.


Marine and Freshwater Research | 2009

Assemblages of fish along a mangrove–mudflat gradient in temperate Australia

Nicholas L. Payne; Bronwyn M. Gillanders

Mangroves are considered to support rich assemblages of fish and invertebrates. Fishes inhabiting mangrove habitats and at various distances from mangroves across mudflats were sampled to: (1) compare fish assemblages between habitats; and (2) determine the influence of mangrove proximity on fish abundance and diversity in three southern Australian estuaries between November 2005 and January 2006. Based on their distribution, fish species were classified as mangrove residents, mudflat residents, generalists or rare species. The assemblage structure of fish in mangroves differed from assemblages 500 m away; however, neither total abundance nor species richness differed significantly between mangroves and mudflats. Mangrove residents and Aldrichetta forsteri (yellow-eyed mullet) displayed strong associations with mangrove habitats, whereas mudflat residents were associated with mudflat habitats. No other fish groups or individual species occurred in higher abundances in either habitat. Total fish abundance, mangrove residents and A. forsteri were positively correlated with pneumatophore density, indicating that the structural complexity of the mangroves might influence the distributions of certain fish species. The current study demonstrated that mangrove habitats in temperate Australia support no greater abundance or diversity of fish than adjacent mudflat habitats and that mangrove proximity does not influence fish distribution at a habitat scale.


Scientific Reports | 2013

Feeding requirements of white sharks may be higher than originally thought

Jayson M. Semmens; Nicholas L. Payne; Charlie Huveneers; David W. Sims; Barry D. Bruce

Quantifying the energy requirements of animals in nature is critical for understanding physiological, behavioural, and ecosystem ecology; however, for difficult-to-study species such as large sharks, prey intake rates are largely unknown. Here, we use metabolic rates derived from swimming speed estimates to suggest that feeding requirements of the worlds largest predatory fish, the white shark (Carcharodon carcharias), are several times higher than previously proposed. Further, our estimates of feeding frequency identify a clear benefit in seasonal selection of pinniped colonies - a white shark foraging strategy seen across much of their range.


Oecologia | 2011

Breeding durations as estimators of adult sex ratios and population size.

Nicholas L. Payne; Bronwyn M. Gillanders; Jayson M. Semmens

Adult sex ratios (ASRs) and population size are two of the most fundamental parameters in population biology, as they are the main determinants of genetic and demographic viability, and vulnerability of a population to stochastic events. Underpinning the application of population viability analysis for predicting the extinction risk of populations is the need to accurately estimate parameters that determine the viability of populations (i.e. the ASR and population size). Here we demonstrate that a lack of temporal information can confound estimation of both parameters. Using acoustic telemetry, we compared differences in breeding durations of both sexes for a giant Australian cuttlefish Sepia apama breeding aggregation to the strongly male-biased operational sex ratio (4:1), in order to estimate the population ASR. The ratio of breeding durations between sexes was equal to the operational sex ratio, suggesting that the ASR is not strongly male-biased, but balanced. Furthermore, the short residence times of individuals at the breeding aggregation suggests that previous density-based abundance estimates have significantly underestimated population size. With the current wide application of population viability analysis for predicting the extinction risk of populations, tools to improve the accuracy of such predictions are vital. Here we provide a new approach to estimating the fundamental ASR parameter, and call for temporal considerations when estimating population size.


Journal of Coastal Research | 2010

Marine Connectivity in a Large Inverse Estuary

Jochen Kämpf; Nicholas L. Payne; Paul Malthouse

Abstract With the addition of several thousand passive virtual particles, a well calibrated hydrodynamic model is employed to explore marine connectivity in Spencer Gulf, South Australia, which is a large inverse estuary, on time scales of months to years. Based on a new method of “cumulative flushing time,” findings reveal that Spencer Gulf consists of two distinct regimes. Lower Spencer Gulf is advectively flushed every winter on a seasonal basis. In contrast to this, Upper Spencer Gulf is dominated by diffusive rather than advective processes and experiences flushing over much longer time scales (200–400 days). The physical uniqueness of Upper Spencer Gulf might explain why this region accommodates the largest known giant cuttlefish spawning aggregation in the world. Using a simple approach to mimic the bottom-dwelling behaviour of this species, we were able to reproduce some observed migratory features, but the model fails to predict the return of cuttlefish to their spawning grounds, which remains a puzzle for future studies.


Environmental Biology of Fishes | 2015

Fine-scale movements, site fidelity and habitat use of an estuarine dependent sparid

Ruan Gannon; Nicholas L. Payne; Iain M. Suthers; Charles A. Gray; Dylan E. van der Meulen; Matthew D. Taylor

Space use and movement patterns are largely influenced by an animal’s size, habitat connectivity, reproductive mode, and foraging behaviours; and are important in defining the broader population biology and ecology of an organism. Acoustic telemetry was used to investigate the home range, habitat use and relative movement patterns of an estuarine dependant sparid (Acanthopagrus australis, Günther). Ten fish were internally tagged with acoustic transmitters and manually tracked in a riverine estuary for four, 3-day periods. Positional data was converted into a relative index of fish movement (Minimum Activity Index, MAI), and also used to estimate kernel density distributions which approximated areas of core and total space use for each fish. Space use for A. australis was not related to fish size; although movement of each fish (MAI) increased with fish length and a reduction in water conductivity. The distance between tagged fish and mangrove habitat was correlated with time-of-day and tide level with yellowfin bream moving closer to mangroves during the daytime and on high tides. Fish movements, residency and site fidelity revealed the nature of decision-making for fish, and the conservation value of small patches of estuarine habitats.


PLOS ONE | 2013

Interactive Drivers of Activity in a Free-Ranging Estuarine Predator

Matthew D. Taylor; Luke McPhan; Dylan E. van der Meulen; Charles A. Gray; Nicholas L. Payne

Animal activity patterns evolve as an optimal balance between energy use, energy acquisition, and predation risk, so understanding how animals partition activity relative to extrinsic environmental fluctuations is central to understanding their ecology, biology and physiology. Here we use accelerometry to examine the degree to which activity patterns of an estuarine teleost predator are driven by a series of rhythmic and arrhythmic environmental fluctuations. We implanted free-ranging bream Acanthopagrus australis with acoustic transmitters that measured bi-axial acceleration and pressure (depth), and simultaneously monitored a series of environmental variables (photosynthetically active radiation, tidal height, temperature, turbidity, and lunar phase) for a period of approximately four months. Linear modeling showed an interaction between fish activity, light level and tidal height; with activity rates also negatively correlated with fish depth. These patterns highlight the relatively-complex trade-offs that are required to persist in highly variable environments. This study demonstrates how novel acoustic sensor tags can reveal interactive links between environmental cycles and animal behavior.

Collaboration


Dive into the Nicholas L. Payne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew D. Taylor

New South Wales Department of Primary Industries

View shared research outputs
Top Co-Authors

Avatar

Charles A. Gray

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain M. Suthers

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuuki Y. Watanabe

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Smith

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge