Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Lewin-Koh is active.

Publication


Featured researches published by Nicholas Lewin-Koh.


Clinical Cancer Research | 2009

Suppression of HER2/HER3-Mediated Growth of Breast Cancer Cells with Combinations of GDC-0941 PI3K Inhibitor, Trastuzumab, and Pertuzumab

Evelyn Yao; Wei Zhou; Si Tuen Lee-Hoeflich; Tom Truong; Peter M. Haverty; Jeffrey Eastham-Anderson; Nicholas Lewin-Koh; Bert Gunter; Marcia Belvin; Lesley J. Murray; Lori Friedman; Mark X. Sliwkowski; Klaus P. Hoeflich

Purpose: Oncogenic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is prevalent in breast cancer and has been associated with resistance to HER2 inhibitors in the clinic. We therefore investigated the combinatorial activity of GDC-0941, a novel class I PI3K inhibitor, with standard-of-care therapies for HER2-amplified breast cancer. Experimental Design: Three-dimensional laminin-rich extracellular matrix cultures of human breast cancer cells were utilized to provide a physiologically relevant approach to analyze the efficacy and molecular mechanism of combination therapies ex vivo. Combination studies were done using GDC-0941 with trastuzumab (Herceptin), pertuzumab, lapatinib (Tykerb), and docetaxel, the principal therapeutic agents that are either approved or being evaluated for treatment of early HER2-positive breast cancer. Results: Significant GDC-0941 activity (EC50 <1 μmol/L) was observed for >70% of breast cancer cell lines that were examined in three-dimensional laminin-rich extracellular matrix culture. Differential responsiveness to GDC-0941 as a single agent was observed for luminal breast cancer cells upon stimulation with the HER3 ligand, heregulin. Combined treatment of GDC-0941, trastuzumab, and pertuzumab resulted in growth inhibition, altered acinar morphology, and suppression of AKT mitogen-activated protein kinase (MAPK) / extracellular signed-regulated kinase (ERK) kinase and MEK effector signaling pathways for HER2-amplified cells in both normal and heregulin-supplemented media. The GDC-0941 and lapatinib combination further showed that inhibition of HER2 activity was essential for maximum combinatorial efficacy. PI3K inhibition also rendered HER2-amplified BT-474M1 cells and tumor xenografts more sensitive to docetaxel. Conclusions: GDC-0941 is efficacious in preclinical models of breast cancer. The addition of GDC-0941 to HER2-directed treatment could augment clinical benefit in breast cancer patients.


Molecular Cancer Therapeutics | 2012

Effects of Anti-VEGF on Pharmacokinetics, Biodistribution, and Tumor Penetration of Trastuzumab in a Preclinical Breast Cancer Model

Cinthia V. Pastuskovas; Eduardo E. Mundo; Simon Williams; Tapan K Nayak; Jason Ho; Sheila Ulufatu; Suzanna Clark; Sarajane Ross; Eric Cheng; Kathryn Parsons-Reponte; Gary Cain; Marjie Van Hoy; Nicholas Majidy; Sheila Bheddah; Josefa Chuh; Katherine R. Kozak; Nicholas Lewin-Koh; Peter Nauka; Daniela Bumbaca; Mark X. Sliwkowski; Jay Tibbitts; Frank-Peter Theil; Paul J. Fielder; Leslie A. Khawli; C. Andrew Boswell

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography–X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes. Mol Cancer Ther; 11(3); 752–62. ©2012 AACR.


Science Translational Medicine | 2011

A Plasmablast Biomarker for Nonresponse to Antibody Therapy to CD20 in Rheumatoid Arthritis

Kasia Owczarczyk; Preeti Lal; Alexander R. Abbas; Kristen Wolslegel; Cecile Holweg; Wolfgang Dummer; Ariella Kelman; Paul Brunetta; Nicholas Lewin-Koh; Marco Sorani; Diane Leong; Paul J. Fielder; David Yocum; Carole Ho; Ward Ortmann; Michael J. Townsend; Timothy W. Behrens

Plasmablast biomarkers predict whether rheumatoid arthritis patients will respond to therapeutic antibodies to CD20. A Molecular Magic Eight Ball Ever wish you could predict the future? From children’s toys to psychic consultants, there’s an entire industry devoted to providing people with insight into upcoming events. This desire for precognition extends to clinical medicine—both doctors and patients wish they could predict whether a treatment will work for a particular disease in a particular patient. Thus, the search for biomarkers was born. However, many studies that claim to identify “biomarkers” have as little experimental validation as a late-night TV psychic, making the truly validated biomarker a rare gem. Owczarczyk et al. now develop such a predictor for nonresponsiveness to anti-CD20 antibody therapy for rheumatoid arthritis. Rituximab and ocrelizumab are therapeutic antibodies that bind to CD20 on the surface of effector and memory B cells, causing them to be depleted from the circulation. These antibodies can be helpful to rheumatoid arthritis patients who don’t fare well with more general antirheumatic drugs, such as nonsteroidal anti-inflammatory drugs, and disease-modifying antirheumatic drugs, such as hydroxychloroquine, sulfasalazine, leflunomide, or methotrexate. But not all patients respond to these expensive targeted biologics. Owczarczyk et al. observed that rheumatoid arthritis patients who don’t respond to anti-CD20 antibodies had elevated amounts of IgJ mRNA, a marker for antibody-secreting plasmablasts. They then performed prospective testing of IgJ mRNA concentrations in one ocrelizumab and two rituximab patient cohorts and found that this marker could predict nonresponse to anti-CD20 antibody therapy. Moreover, a combination mRNA biomarker, IgJhiFCRL5lo, improved test performance over IgJhi alone. Will these biomarkers also be useful in stratifying response rates in other diseases in which anti-CD20 antibody therapy has shown clinical activity such as relapsing-remitting multiple sclerosis and ANCA-associated vasculitis? Cannot predict now. Ask again later. An important goal for personalized health care is the identification of biomarkers that predict the likelihood of treatment responses. Here, we tested the hypothesis that quantitative mRNA assays for B lineage cells in blood could serve as baseline predictors of therapeutic response to B cell depletion therapy in subjects with rheumatoid arthritis (RA). In samples from the REFLEX trial of rituximab in inadequate responders to antibodies to tumor necrosis factor–α, a 25% subgroup of treated subjects with elevated baseline mRNA levels of IgJ, a marker for antibody-secreting plasmablasts, showed reduced clinical response rates. There were no significant efficacy differences in the placebo arm subjects stratified by this marker. Prospective testing of the IgJ biomarker in the DANCER and SERENE rituximab clinical trial cohorts and the SCRIPT ocrelizumab cohort confirmed the utility of this marker to predict nonresponse to anti-CD20 therapy. A combination mRNA biomarker, IgJ hiFCRL5lo, showed improved test performance over IgJ hi alone. This study demonstrates that baseline blood levels of molecular markers for late-stage B lineage plasmablasts identify a ~20% subgroup of active RA subjects who are unlikely to gain substantial clinical benefit from anti-CD20 B cell depletion therapy.


mAbs | 2012

Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration

Yanan Zheng; Devin Tesar; Lisa Benincosa; Herbert Birnböck; C. Andrew Boswell; Daniela Bumbaca; Kyra J. Cowan; Dimitry M. Danilenko; Ann L. Daugherty; Paul J. Fielder; Hans Peter Grimm; Amita Joshi; Nicole Justies; Gerry Kolaitis; Nicholas Lewin-Koh; Jing Li; Sami McVay; Jennifer O'Mahony; Michael B. Otteneder; Michael Pantze; Wendy S. Putnam; Zhihua J. Qiu; Jane Ruppel; Thomas Singer; Oliver Boris Stauch; Frank-Peter Theil; Jennifer Visich; Jihong Yang; Yong Ying; Leslie A. Khawli

Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.


Journal of Immunology | 2013

A Restricted Role for TYK2 Catalytic Activity in Human Cytokine Responses Revealed by Novel TYK2-Selective Inhibitors

Sue J. Sohn; Kathy Barrett; Anne van Abbema; Christine Chang; Pawan Bir Kohli; Hidenobu Kanda; Janice Smith; Yingjie Lai; Aihe Zhou; Birong Zhang; Wenqian Yang; Karen Williams; Calum Macleod; Christopher Hurley; Janusz Jozef Kulagowski; Nicholas Lewin-Koh; Hart S. Dengler; Adam R. Johnson; Nico Ghilardi; Mark Zak; Jun Liang; Wade S. Blair; Steven Magnuson; Lawren C. Wu

TYK2 is a JAK family protein tyrosine kinase activated in response to multiple cytokines, including type I IFNs, IL-6, IL-10, IL-12, and IL-23. Extensive studies of mice that lack TYK2 expression indicate that the IFN-α, IL-12, and IL-23 pathways, but not the IL-6 or IL-10 pathways, are compromised. In contrast, there have been few studies of the role of TYK2 in primary human cells. A genetic mutation at the tyk2 locus that results in a lack of TYK2 protein in a single human patient has been linked to defects in the IFN-α, IL-6, IL-10, IL-12, and IL-23 pathways, suggesting a broad role for TYK2 protein in human cytokine responses. In this article, we have used a panel of novel potent TYK2 small-molecule inhibitors with varying degrees of selectivity against other JAK kinases to address the requirement for TYK2 catalytic activity in cytokine pathways in primary human cells. Our results indicate that the biological processes that require TYK2 catalytic function in humans are restricted to the IL-12 and IL-23 pathways, and suggest that inhibition of TYK2 catalytic activity may be an efficacious approach for the treatment of select autoimmune diseases without broad immunosuppression.


EBioMedicine | 2015

Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

Ganesh Kolumam; Mark Z. Chen; Raymond K. Tong; Jose Zavala-Solorio; Lance Kates; Nicholas van Bruggen; Jed Ross; Shelby K. Wyatt; Vineela D. Gandham; Richard A. D. Carano; Diana Ronai Dunshee; Ai-Luen Wu; Benjamin Haley; Keith R. Anderson; Søren Warming; Xin Y. Rairdan; Nicholas Lewin-Koh; Yingnan Zhang; Johnny Gutierrez; Amos Baruch; Thomas Gelzleichter; Dale Stevens; Sharmila Rajan; Travis W. Bainbridge; Jean-Michel Vernes; Y. Gloria Meng; James Ziai; Robert Soriano; Matthew J. Brauer; Yongmei Chen

Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.


Analytical Biochemistry | 2012

A secreted protein microarray platform for extracellular protein interaction discovery

Sree R. Ramani; Irene Tom; Nicholas Lewin-Koh; Bernd Wranik; Laura DePalatis; Jianjun Zhang; Dan L. Eaton; Lino C. Gonzalez

Characterization of the extracellular protein interactome has lagged far behind that of intracellular proteins, where mass spectrometry and yeast two-hybrid technologies have excelled. Improved methods for identifying receptor-ligand and extracellular matrix protein interactions will greatly accelerate biological discovery in cell signaling and cellular communication. These technologies must be able to identify low-affinity binding events that are often observed between membrane-bound coreceptor molecules during cell-cell or cell-extracellular matrix contact. Here we demonstrate that functional protein microarrays are particularly well-suited for high-throughput screening of extracellular protein interactions. To evaluate the performance of the platform, we screened a set of 89 immunoglobulin (Ig)-type receptors against a highly diverse extracellular protein microarray with 686 genes represented. To enhance detection of low-affinity interactions, we developed a rapid method to assemble bait Fc fusion proteins into multivalent complexes using protein A microbeads. Based on these screens, we developed a statistical methodology for hit calling and identification of nonspecific interactions on protein microarrays. We found that the Ig receptor interactions identified using our methodology are highly specific and display minimal off-target binding, resulting in a 70% true-positive to false-positive hit ratio. We anticipate that these methods will be useful for a wide variety of functional protein microarray users.


PLOS Pathogens | 2014

A Neutralizing Anti-gH/gL Monoclonal Antibody Is Protective in the Guinea Pig Model of Congenital CMV Infection

Marcy R. Auerbach; Donghong Yan; Rajesh Vij; Jo-Anne Hongo; Gerald R. Nakamura; Jean-Michel Vernes; Y. Gloria Meng; Samantha Lein; Pamela Chan; Jed Ross; Richard A. D. Carano; Rong Deng; Nicholas Lewin-Koh; Min Xu; Becket Feierbach

Human cytomegalovirus (HCMV) is the most common cause of congenital virus infection. Congenital HCMV infection occurs in 0.2–1% of all births, and causes birth defects and developmental abnormalities, including sensorineural hearing loss and developmental delay. Several key studies have established the guinea pig as a tractable model for the study of congenital HCMV infection and have shown that polyclonal antibodies can be protective [1]–[3]. In this study, we demonstrate that an anti-guinea pig CMV (GPCMV) glycoprotein H/glycoprotein L neutralizing monoclonal antibody protects against fetal infection and loss in the guinea pig. Furthermore, we have delineated the kinetics of GPCMV congenital infection, from maternal infection (salivary glands, seroconversion, placenta) to fetal infection (fetus and amniotic fluid). Our studies support the hypothesis that a neutralizing monoclonal antibody targeting an envelope GPCMV glycoprotein can protect the fetus from infection and may shed light on the therapeutic intervention of HCMV congenital infection in humans.


PLOS ONE | 2013

EGFR Inhibitor Erlotinib Delays Disease Progression but Does Not Extend Survival in the SOD1 Mouse Model of ALS

Claire E. Le Pichon; Sara L. Dominguez; Hilda Solanoy; Hai Ngu; Nicholas Lewin-Koh; Mark J. Chen; Jeffrey Eastham-Anderson; Ryan J. Watts; Kimberly Scearce-Levie

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR) signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.


Biotechnology and Bioengineering | 2014

Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy

Michael Milligan; Nicholas Lewin-Koh; Daniel Coleman; Adeyma Arroyo; Victor Saucedo

Near infrared (NIR) spectroscopy has the capability of providing real‐time, multi‐analyte monitoring of the complex reaction mixture associated with cell culture processes. However, the development of robust models to predict the concentration of key analytes has proven difficult. In this study, a modeling methodology using semisynthetic process samples was used to predict glucose concentrations in Chinese Hamster Ovary (CHO) cell culture processes. Partial Least Squares (PLS) regression models were built from in situ NIR spectra, and glucose levels between 4.0 and 14.0 g/L. Two models were constructed. The “standard model” used data provided by cell culture production process samples. The “full model” included the data provided from both cell culture production process samples and semisynthetic samples. The semisynthetic samples were generated by titrating cell culture samples with target viable cell density (VCD) and lactate levels to defined glucose concentrations. The robustness of each model was gauged by predicting glucose in a subsequent cell culture process utilizing a media formulation and cell line not contained in the calibration data sets. The “full model” generated glucose predictions with a root mean square error of prediction (RMSEP) of 0.99 g/L while the “standard model” provided glucose predictions with a RMSEP of 2.26 g/L. The modeling approach utilizing semisynthetic samples proved to be faster development and more effective than using just standard cell culture processes. Biotechnol. Biotechnol. Bioeng. 2014;111: 896–903.

Collaboration


Dive into the Nicholas Lewin-Koh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge