Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas P. Gannon is active.

Publication


Featured researches published by Nicholas P. Gannon.


Diabetes, Obesity and Metabolism | 2014

Characterization of the metabolic effects of irisin on skeletal muscle in vitro

Roger A. Vaughan; Nicholas P. Gannon; Miguel A Barberena; Randi Garcia-Smith; Marco Bisoffi; Christine M. Mermier; Carole A. Conn; Kristina A. Trujillo

This work explored the effects of irisin on metabolism, gene expression and mitochondrial content in cultured myocytes.


International Journal of Cancer | 2015

Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro

Nicholas P. Gannon; Roger A. Vaughan; Randi Garcia-Smith; Marco Bisoffi; Kristina A. Trujillo

Exercise has been shown to reduce risk and improve prognosis of several types of cancers. Irisin is a myokine linked to exercise and lean body mass, which is thought to favorably alter metabolism systemically, potentially providing benefit for metabolic disease (including cancer). We evaluated the effects of various concentrations of irisin (with and without post‐translational modifications) on malignant and non‐malignant breast epithelial cell number, migration and viability. Irisin significantly decreased cell number, migration and viability in malignant MDA‐MB‐231 cells, without affecting non‐malignant MCF‐10a cells. Moreover, irisin enhanced the cytotoxic effect of doxorubicin (Dox) when added to a wide spectrum of irisin concentrations in the malignant cell type (with simultaneous reduction in Dox uptake), which was not observed in non‐malignant MCF‐10a cells. Additionally, we found that irisin decreases malignant cell viability in part through stimulation of caspase activity leading to apoptotic death. Interestingly, we found that irisin suppresses NFκB activation, an opposite effect of other myokines such as tumor necrosis factor alpha (TNF‐α). Our observations suggest that irisin may offer therapeutic benefits for breast cancer prevention and treatment possibly through an anti‐inflammatory response, induction of apoptotic cell death, or through enhanced tumor sensitivity to common antineoplastic agents such as Dox.


Molecular Nutrition & Food Research | 2015

Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: A mini-review

Nicholas P. Gannon; Carole A. Conn; Roger A. Vaughan

Chronic insulin resistance can lead to type II diabetes mellitus, which is also directly influenced by an individuals genetics as well as their lifestyle. Under normal circumstances, insulin facilitates glucose uptake in skeletal muscle and adipose tissue by stimulating glucose transporter 4 (GLUT4) translocation and activity. GLUT4 activity is directly correlated with the ability to clear elevated blood glucose and insulin sensitivity. In diabetes, energy excess and prolonged hyperinsulinemia suppress muscle and adipose response to insulin, in part through reduced GLUT4 membrane levels. This work uniquely describes much of the experimental data demonstrating the effects of various dietary components on GLUT4 expression and translocation in skeletal muscle. These observations implicate several individual dietary chemicals as potential adjuvant therapies in the maintenance of diabetes and insulin resistance.


Journal of Physiology and Biochemistry | 2015

Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism.

Roger A. Vaughan; Nicholas P. Gannon; Christine M. Mermier; Carole A. Conn

Exercise offers several benefits for health, including increased lean body mass and heightened energy expenditure, which may be partially attributable to secretory factors known as myokines. Irisin, a recently identified myokine, was shown to increase metabolic rate and mitochondrial content in both myocytes and adipocytes; however, the mechanism(s) of action still remain largely unexplained. This work investigated if irisin functions by acting as an inflammatory myokine leading to cellular stress and energy expenditure. C2C12 myotubes were treated with various concentrations of irisin, TNFα, or IL6 for various durations. Glycolytic and oxidative metabolism, as well as mitochondrial uncoupling, were quantified by measurement of acidification and oxygen consumption, respectively. Metabolic gene and protein expression were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting, respectively. Mitochondrial content was assessed by fluorescent imaging. NFκB activity was assessed using an NFκB GFP-linked reporter system. Consistent with previous findings, irisin significantly increased expression of several genes including peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) leading to increased mitochondrial content and oxygen consumption. Despite some similarities between TNFα and irisin treatment, irisin failed to activate the NFκB pathway like TNFα, suggesting that irisin may not act as an inflammatory signal. Irisin has several effects on myotube metabolism which appear to be dependent on substrate availability; however, the precise mechanism(s) by which irisin functions in skeletal muscle remain unclear. Our observations support the hypothesis that irisin does not function through inflammatory NFκB activation like other myokines (such as TNFα).


Molecular Cancer | 2014

β-alanine suppresses malignant breast epithelial cell aggressiveness through alterations in metabolism and cellular acidity in vitro

Roger A. Vaughan; Nicholas P. Gannon; Randi Garcia-Smith; Yamhilette Licon-Munoz; Miguel A Barberena; Marco Bisoffi; Kristina A. Trujillo

BackgroundDeregulated energetics is a property of most cancer cells. This phenomenon, known as the Warburg Effect or aerobic glycolysis, is characterized by increased glucose uptake, lactate export and extracellular acidification, even in the presence of oxygen. β-alanine is a non-essential amino acid that has previously been shown to be metabolized into carnosine, which functions as an intracellular buffer. Because of this buffering capacity, we investigated the effects of β-alanine on the metabolic cancerous phenotype.MethodsNon-malignant MCF-10a and malignant MCF-7 breast epithelial cells were treated with β-alanine at 100 mM for 24 hours. Aerobic glycolysis was quantified by measuring extracellular acidification rate (ECAR) and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR). mRNA of metabolism-related genes was quantified by qRT-PCR with corresponding protein expression quantified by immunoblotting, or by flow cytometry which was verified by confocal microscopy. Mitochondrial content was quantified using a mitochondria-specific dye and measured by flow cytometry.ResultsCells treated with β-alanine displayed significantly suppressed basal and peak ECAR (aerobic glycolysis), with simultaneous increase in glucose transporter 1 (GLUT1). Additionally, cells treated with β-alanine exhibited significantly reduced basal and peak OCR (oxidative metabolism), which was accompanied by reduction in mitochondrial content with subsequent suppression of genes which promote mitochondrial biosynthesis. Suppression of glycolytic and oxidative metabolism by β-alanine resulted in the reduction of total metabolic rate, although cell viability was not affected. Because β-alanine treatment reduces extracellular acidity, a constituent of the invasive microenvironment that promotes progression, we investigated the effect of β-alanine on breast cell viability and migration. β-alanine was shown to reduce both cell migration and proliferation without acting in a cytotoxic fashion. Moreover, β-alanine significantly increased malignant cell sensitivity to doxorubicin, suggesting a potential role as a co-therapeutic agent.ConclusionTaken together, our results suggest that β-alanine may elicit several anti-tumor effects. Our observations support the need for further investigation into the mechanism(s) of action and specificity of β-alanine as a co-therapeutic agent in the treatment of breast tumors.


American Journal of Physiology-endocrinology and Metabolism | 2017

The Niemann-Pick C1 gene interacts with a high-fat diet to promote weight gain through differential regulation of central energy metabolism pathways

Joseph J. Castillo; David Jelinek; Hao Wei; Nicholas P. Gannon; Roger A. Vaughan; L. John Horwood; F. John Meaney; Randi Garcia-Smith; Kristina A. Trujillo; Randall A. Heidenreich; David Meyre; Robert A. Orlando; Renee C. LeBoeuf; William S. Garver

A genome-wide association study (GWAS) reported that common variation in the human Niemann-Pick C1 gene (NPC1) is associated with morbid adult obesity. This study was confirmed using our BALB/cJ Npc1 mouse model, whereby heterozygous mice (Npc1+/- ) with decreased gene dosage were susceptible to weight gain when fed a high-fat diet (HFD) compared with homozygous normal mice (Npc1+/+ ) fed the same diet. The objective for our current study was to validate this Npc1 gene-diet interaction using statistical modeling with fitted growth trajectories, conduct body weight analyses for different measures, and define the physiological basis responsible for weight gain. Metabolic phenotype analysis indicated no significant difference between Npc1+/+ and Npc1+/- mice fed a HFD for food and water intake, oxygen consumption, carbon dioxide production, locomotor activity, adaptive thermogenesis, and intestinal lipid absorption. However, the livers from Npc1+/- mice had significantly increased amounts of mature sterol regulatory element-binding protein-1 (SREBP-1) and increased expression of SREBP-1 target genes that regulate glycolysis and lipogenesis with an accumulation of triacylglycerol and cholesterol. Moreover, white adipose tissue from Npc1+/- mice had significantly decreased amounts of phosphorylated hormone-sensitive lipase with decreased triacylglycerol lipolysis. Consistent with these results, cellular energy metabolism studies indicated that Npc1+/- fibroblasts had significantly increased glycolysis and lipogenesis, in addition to significantly decreased substrate (glucose and endogenous fatty acid) oxidative metabolism with an accumulation of triacylglycerol and cholesterol. In conclusion, these studies demonstrate that the Npc1 gene interacts with a HFD to promote weight gain through differential regulation of central energy metabolism pathways.


Journal of Traditional and Complementary Medicine | 2016

Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content

Roger A. Vaughan; Nicholas P. Gannon; Colin R. Carriker

Beetroot (甜菜 tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription–polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits.


Biochimie | 2016

Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes.

Jamie K. Schnuck; Kyle L. Sunderland; Nicholas P. Gannon; Matthew R. Kuennen; Roger A. Vaughan

Leucine stimulates anabolic and catabolic processes in skeletal muscle, however little is known about the effects of leucine on peroxisome proliferator-activated receptor (PPAR) activity. This work characterized the effects of 24-h leucine treatment on metabolic parameters and protein expression in cultured myotubes. Leucine significantly increased PPARβ/δ expression as well as markers of mitochondrial biogenesis, leading to significantly increased mitochondrial content and oxidative metabolism in a PPARβ/δ-dependent manner. However, leucine-treated cells did not display significant alterations in uncoupling protein expression or oxygen consumed per relative mitochondrial content suggesting leucine-mediated increases in oxidative metabolism are a function of increased mitochondrial content and not altered mitochondrial efficiency. Leucine treatment also increased GLUT4 content and glucose uptake as well as PPARγ and FAS expression leading to increased total lipid content. Leucine appears to activate PPAR activity leading to increased mitochondrial biogenesis and elevated substrate oxidation, while simultaneously promoting substrate/lipid storage and protein synthesis.


Molecular Nutrition & Food Research | 2018

BCAA Metabolism and Insulin Sensitivity – Dysregulated by Metabolic Status?

Nicholas P. Gannon; Jamie K. Schnuck; Roger A. Vaughan

Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.


Biofactors | 2016

The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types

Nicholas P. Gannon; Emily L. Lambalot; Roger A. Vaughan

There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the “hot” or “spicy” sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption.

Collaboration


Dive into the Nicholas P. Gannon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole A. Conn

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Bisoffi

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge