Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas P. Murphy is active.

Publication


Featured researches published by Nicholas P. Murphy.


Zoologica Scripta | 2005

Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): biogeography, taxonomy and the convergent evolution of abbreviated larval development

Nicholas P. Murphy; Christopher M. Austin

There has hitherto been little research into evolutionary and taxonomic relationships amongst species of the freshwater prawn genus Macrobrachium Bate across its global distribution. Previous work by the authors demonstrated that the endemic Australian species did not evolve from a single ancestral lineage. To examine whether other regional Macrobrachium faunas also reflect this pattern of multiple origins, the phylogeny of 30 Macrobrachium species from Asia, Central/South America and Australia was inferred from mitochondrial 16S rRNA sequences. Phylogenetic relationships demonstrate that, despite some evidence for regional diversification, Australia, Asia and South America clearly contain Macrobrachium species that do not share a common ancestry, suggesting that large‐scale dispersal has been a major feature of the evolutionary history of the genus. The evolution of abbreviated larval development (ALD), associated with the transition from an estuarine into a purely freshwater lifecycle, was also mapped onto the phylogeny and was shown to be a relatively homoplasious trait and not taxonomically informative. Other taxonomic issues, as well as the evolutionary origins of Macrobrachium, are also discussed.


Molecular Ecology | 2008

Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia's Great Artesian Basin.

Nicholas P. Murphy; Mark Adams; Andrew D. Austin

The groundwater‐dependent springs of the Great Artesian Basin (GAB) in arid inland Australia represent a unique and threatened ecosystem. These incredibly isolated springs support a diverse array of endemic flora and fauna. One of the common faunal groups in the GAB springs is the freshwater amphipods of the family Chiltoniidae. The morphological conservatism and taxonomic uncertainty associated with these amphipods has ensured their true biodiversity, phylogeographical history and evolutionary affinities have remained unknown. We have used mitochondrial DNA and allozyme data to unravel a complicated history of isolation, extinction and dispersal among spring amphipod populations across the GAB. The results provide evidence for multiple independent colonizations in the GAB springs, particularly within the Lake Eyre group of springs. The inclusion of a group of Western Australian (WA) stygobitic amphipods from populations up to 1500 km away found surprising evidence for a shared evolutionary history between stygobitic and GAB spring amphipods. Approximate dating of the diversity found between major clades suggests the majority of lineages originated in the late Miocene, around the time of the aridification of inland Australia. The large number of independent lineages and the close connection between GAB spring and WA stygobitic amphipods suggest that a significantly rich amphipod fauna existed in the much wetter environment that once existed in inland Australia. The results also provide evidence for a gross underestimation of the species diversity within the springs, with 12 putative species identified, a conclusion with significant implications for the ongoing conservation of the GAB springs.


Journal of Crustacean Biology | 2003

Molecular Taxonomy and Phylogenetics of Some Species of Australian Palaemonid Shrimps

Nicholas P. Murphy; Christopher M. Austin

Abstract The evolutionary history and classification of the palaemonid shrimps has been the subject of constant speculation and debate. At present, all major systematic treatments have been based on morphological characteristics. To help resolve the phylogenetic relationships, and thus enable the creation of a classification system that reflects evolutionary history, a region of the 16S mitochondrial rRNA gene was sequenced for a number of Australian Palaemonidae. The resulting phylogenetic analyses indicated the presence of major anomalies in the current classification of Australian Palaemonidae. Significantly, three species belonging to three separate genera, Macrobrachium intermedium, Palaemon serenus, and Palaemonetes australis, are closely related, with genetic differences more characteristic with that of congeneric species. The results also demonstrate non-monophyly in Australian palaemonids with respect to both Palaemonetes and Macrobrachium.


Australian Journal of Zoology | 2004

Multiple origins of the endemic Australian Macrobrachium (Decapoda : Palaemonidae) based on 16S rRNA mitochondrial sequences

Nicholas P. Murphy; Christopher M. Austin

The evolutionary relationships of the freshwater prawn genus Macrobrachium are obscure. Members of this genus are widely distributed across tropical and subtropical regions. The phylogenetic relationships among the seven endemic and six non-endemic Australian Macrobrachium, along with five non-Australian species, were inferred from the mitochondrial 16S rRNA gene sequences. Methods of analysis yielded phylogenetic trees of differing topologies; however, none supported a monophyletic origin for endemic Australian Macrobrachium. Enforced monophyly of a single origin of endemic Macrobrachium was statistically tested and rejected. These results support the view that the endemic Australian Macrobrachium arose from multiple origins. Previous biogeographical hypotheses related to the radiation of Macrobrachium into Australia are re-examined in the context of these results.


Invertebrate Systematics | 2002

A preliminary study of 16S rRNA sequence variation in Australian Macrobrachium shrimps (Palaemonidae : Decapoda) reveals inconsistencies in their current classification

Nicholas P. Murphy; Christopher M. Austin

The systematic relationships among Australian palaemonid shrimps have been the subject of speculation for some time. A preliminary phylogenetic study was undertaken to clarify the relationships of five species, Macrobrachium intermedium (Stimpson), M. australiense (Holthuis), M. atactum (Riek), M. rosenbergii (de Man) and Palaemon serenus (Heller), using 16S rRNA mitochondrial gene sequences. Phylogenetic analyses indicated inconsistencies with the current classification in two respects. First, M. intermedium formed a very well-supported clade with P. serenus distinct from M. australiense, M. atactum and M. rosenbergii. Second, the two species from inland Australia, M. australiense and M. atactum, showed a high level of genetic similarity over a substantial geographic range, suggesting that they may represent conspecific populations. The taxonomic and biogeographic implications of these findings for Macrobrachium in Australia are discussed.


Molecular Phylogenetics and Evolution | 2013

Extraordinary micro-endemism in Australian desert spring amphipods.

Nicholas P. Murphy; Mark Adams; Michelle T. Guzik; Andrew D. Austin

Increasing pressure for water in the Australian arid zone is placing enormous stress on the diverse endemic communities inhabiting desert springs. Detailed information about the evolutionary processes occurring within and between individual endemic species will help to develop effective and biologically relevant management strategies this fragile ecosystem. To help determine conservation priorities, we documented the genetic structure of the endemic freshwater amphipod populations in springs fed by the Great Artesian Basin in central Australia. Phylogenetic and phylogeographic history and genetic diversity measures were examined using nuclear and mitochondrial DNA from approximately 500 chiltoniid amphipods across an entire group of springs. Pronounced genetic diversity was identified, demonstrating that levels of endemism have been grossly underestimated in these amphipods. Using the GMYC model, 13 genetically divergent lineages were recognized as Evolutionarily Significant Units (ESUs), all of which could be considered as separate species. The results show that due to the highly fragmented ecosystem, these taxa have highly restricted distributions. Many of the identified ESUs are endemic to a very small number of already degraded springs, with the rarest existing in single springs. Despite their extraordinarily small ranges, most ESUs showed relative demographic stability and high levels of genetic diversity, and genetic diversity was not directly linked to habitat extent. The relatively robust genetic health of ESUs does not preclude them from endangerment, as their limited distributions ensure they will be highly vulnerable to future water extraction.


Transplantation | 2008

Intrahepatic complement activation, sinusoidal endothelial injury, and lactic acidosis are associated with initial poor function of the liver after transplantation.

Michael A. Silva; Darius F. Mirza; Nicholas P. Murphy; Douglas A. Richards; Gary M. Reynolds; Stephen J. Wigmore; Desley Neil

Background. Changes in glucose metabolism in the liver during transplantation have been recently described using microdialysis. Here, these findings are correlated with histopathologic, immunohistochemical, and ultrastructural changes in liver. Methods. Microdialysis catheters were inserted into 15 human livers, which were perfused with isotonic solution, and samples of perfusate were analyzed before harvest, after storage, and after reperfusion. At each stage Menghini needle biopsy samples were taken and each studied using light and electron microscopy. Results. Six livers showed serum biochemical evidence of initial poor function. These livers had significantly more staining for complement fragment 4d (C4d) of both lobular and periportal hepatocytes. C4d-positive hepatocytes were also found in the liver during cold storage (3 of 15). These periportal hepatocytes also showed evidence of necrosis and were found to have intracellular neutrophils. Hepatocyte rounding in zone III, necrosis, and C4d staining in recipient were also significantly correlated with the degree of lactic acidosis during this phase. Intrahepatic lactic acidosis at all time points was significantly associated with sinusoidal endothelial cell injury after reperfusion. There were no correlations between glucose, pyruvate, and glycerol levels and histopathologic changes in the liver. Discussion. In the patients studied, the degree of C4d staining correlated with initial poor function and was associated with intrahepatic lactic acidosis in the donor during cold storage and after reperfusion. Complement activity in the liver during cold storage may be after in situ activation. Intrahepatic lactic acidosis is associated with sinusoidal endothelial cell and hepatocyte injury. The role of intrahepatic neutrophils is uncertain and could possibly be in response to cell necrosis.


PLOS ONE | 2012

Desert Springs: Deep Phylogeographic Structure in an Ancient Endemic Crustacean (Phreatomerus latipes)

Michelle T. Guzik; Mark Adams; Nicholas P. Murphy; Steven J.B. Cooper; Andrew D. Austin

Desert mound springs of the Great Artesian Basin in central Australia maintain an endemic fauna that have historically been considered ubiquitous throughout all of the springs. Recent studies, however, have shown that several endemic invertebrate species are genetically highly structured and contain previously unrecognised species, suggesting that individuals may be geographically ‘stranded in desert islands’. Here we further tested the generality of this hypothesis by conducting genetic analyses of the obligate aquatic phreatoicid isopod Phreatomerus latipes. Phylogenetic and phylogeographic relationships amongst P. latipes individuals were examined using a multilocus approach comprising allozymes and mtDNA sequence data. From the Lake Eyre region in South Australia we collected data for 476 individuals from 69 springs for the mtDNA gene COI; in addition, allozyme electrophoresis was conducted on 331 individuals from 19 sites for 25 putative loci. Phylogenetic and population genetic analyses showed three major clades in both allozyme and mtDNA data, with a further nine mtDNA sub-clades, largely supported by the allozymes. Generally, each of these sub-clades was concordant with a traditional geographic grouping known as spring complexes. We observed a coalescent time between ∼2–15 million years ago for haplotypes within each of the nine mtDNA sub-clades, whilst an older total time to coalescence (>15 mya) was observed for the three major clades. Overall we observed that multiple layers of phylogeographic history are exemplified by Phreatomerus, suggesting that major climate events and their impact on the landscape have shaped the observed high levels of diversity and endemism. Our results show that this genus reflects a diverse fauna that existed during the early Miocene and appears to have been regionally restricted. Subsequent aridification events have led to substantial contraction of the original habitat, possibly over repeated Pleistocene ice age cycles, with P. latipes populations becoming restricted in the distribution to desert springs.


Molecular Phylogenetics and Evolution | 2012

Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers

Kate A. Muirhead; Nicholas P. Murphy; Nader Sallam; Stephen C. Donnellan; Andrew D. Austin

The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The concatenated five gene phylogenetic analyses did not support the overall separation and monophyly of clades associated with different host species, although some clades did show specific host associations, possibly due to localized host availability, rather than host specificity. Our results provide a framework for assessing whether distinct lineages represent cryptic species, and for examining parasitoid-host evolution and compatibility more generally. Given the limitations of morphological based identification for members of this complex, molecular identification is recommended prior to any biological control introductions.


Annales De La Societe Entomologique De France | 2006

Mitochondrial DNA phylogeography of the Cotesia flavipes complex of parasitic wasps (Hymenoptera: Braconidae)

Kate A. Muirhead; Nicholas P. Murphy; Mohamed Sallam; Steve Donnellan; Andrew D. Austin

Abstract The Cotesia flavipes species complex of parasitic wasps are economically important worldwide for the biological control of lepidopteran stem borers. The complex currently comprises three species: Cotesia flavipes Cameron, C. sesamiae (Cameron) and C. chilonis (Matsumura) (Hymenoptera: Braconidae), which appear morphologically similar. Despite their economic importance, little is known about the genetic diversity and phylogeography of these parasitoids. Differences in the biology of geographic populations have generally been interpreted as genetic divergence among strains, but direct genetic evidence is lacking. In Australia, several stem borer pests in neighbouring countries have been identified as significant threats to the sugar industry. However, the status of C. flavipes in Australia is unknown. To examine the genetic variation among worldwide populations of the C. flavipes complex and investigate the status of the Australian C. flavipes-like species, partial sequence data were generated for mitochondrial gene regions, 16S rRNA and COI. Parsimony, minimum evolution and Bayesian analyses based on 21 geographic populations of the complex and four outgroups supported the monophyly of the complex and the existence of genetically divergent populations of C. flavipes and C. sesamiae. The geographically isolated Australian haplotypes formed a distinct lineage within the complex and were ~3.0% divergent from the other species. The results indicated that historical biogeographic barriers and recent biological control introductions play an important role in structuring lineages within these species. This study provides a phylogeographical context for examining adaptive evolution and host range within biologically divergent strains of the C. flavipes complex.

Collaboration


Dive into the Nicholas P. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Austin

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Adams

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Darius F. Mirza

Queen Elizabeth Hospital Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michael A. Silva

Queen Elizabeth Hospital Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge