Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Paul Abel is active.

Publication


Featured researches published by Nicholas Paul Abel.


Astronomy and Astrophysics | 2007

A photon dominated region code comparison study

M. Röllig; Nicholas Paul Abel; T. A. Bell; Frank Bensch; J. H. Black; Gary J. Ferland; B. Jonkheid; I. Kamp; Michael J. Kaufman; J. Le Bourlot; F. Le Petit; R. Meijerink; O. Morata; V. Ossenkopf; E. Roueff; Gargi Shaw; Marco Spaans; A. Sternberg; J. Stutzki; W. F. Thi; E. F. van Dishoeck; P. A. M. van Hoof; Serena Viti; Mark G. Wolfire

Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been created, covering low and high gas densities n = 10 3 , 10 5.5 cm −3 and far ultraviolet intensities χ = 10, 10 5 in units of the Draine field (FUV: 6 < h ν< 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-processes, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR model bench-marking and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that there is still a considerable uncertainty when interpreting astronomical data with our models.Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been calculated, covering low and high gas densities n = 103, 105.5 cm−3 and far ultraviolet intensities χ = 10, 105 (FUV: 6 < h ν < 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-reactions, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR modeling and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that the astronomical data should not be overinterpreted.


The Astrophysical Journal | 2005

Molecular hydrogen in star-forming regions : Implementation of its microphysics in cloudy

Gargi Shaw; Gary J. Ferland; Nicholas Paul Abel; P. C. Stancil; P. A. M. van Hoof

Much of the baryonic matter in the universe is in the form of H2, which includes most of the gas in Galactic and extragalactic interstellar clouds. Molecular hydrogen plays a significant role in establishing the thermal balance in many astrophysical environments and can be important as a spectral diagnostic of the gas. Modeling and interpretation of observations of such environments requires a quantitatively complete and accurate treatment of H2. Using this microphysical model of H2, we present illustrative calculations of prototypical astrophysical environments. This work forms the foundation for future investigations of these and other environments in which H2 is an important constituent.


Astrophysical Journal Supplement Series | 2005

The H II Region/PDR Connection: Self-consistent Calculations of Physical Conditions in Star-forming Regions

Nicholas Paul Abel; Gary J. Ferland; Gargi Shaw; P. A. M. van Hoof

We have performed a series of calculations designed to reproduce infrared diagnostics used to determine physical conditions in star-forming regions. We self-consistently calculate the thermal and chemical structure of an H II region and photodissociation region (PDR) that are in pressure equilibrium. This differs from previous work, which used separate calculations for each gas phase. Our calculations span a wide range of stellar temperatures, gas densities, and ionization parameters. We describe improvements made to the spectral synthesis code Cloudy that made these calculations possible. These include the addition of a molecular network with ~1000 reactions involving 68 molecular species and improved treatment of the grain physics. Data from the Spitzer First Look Survey, along with other archives, are used to derive important physical characteristics of the H II region and PDR. These include stellar temperatures, electron densities, ionization parameters, UV radiation flux (G0), and PDR density. Finally, we calculate the contribution of the H II region to PDR emission line diagnostics, which allows for a more accurate determination of physical conditions in the PDR.


The Astrophysical Journal | 2007

A Magnetically Supported Photodissociation Region in M17

Eric W. Pellegrini; J. A. Baldwin; Crystal Lee Brogan; M. M. Hanson; Nicholas Paul Abel; Gary J. Ferland; Humeshkar B. Nemala; Gargi Shaw; T. H. Troland

The southwestern (SW) part of the Galactic H II region M17 contains an obscured ionization front that is most easily seen at infrared and radio wavelengths. It is nearly edge-on, thus offering an excellent opportunity to study the way in which the gas changes from fully ionized to molecular as radiation from the ionizing stars penetrates into the gas. M17 is also one of the very few H II regions for which the magnetic field strength can be measured in the photodissociation region ( PDR) that forms the interface between the ionized and molecular gas. Here we model an observed line of sight through the gas cloud, including the H+, H0 (PDR), and molecular layers, in a fully self-consistent single calculation. An interesting aspect of the M17 SW bar is that the PDR is very extended. We show that the strong magnetic field that is observed to be present inevitably leads to a very deep PDR, because the structure of the neutral and molecular gas is dominated by magnetic pressure, rather than by gas pressure, as previously had been supposed. We also show that a wide variety of observed facts can be explained if a hydrostatic geometry prevails, in which the gas pressure from an inner X-ray hot bubble and the outward momentum of the stellar radiation field compress the gas and its associated magnetic field in the PDR, as has already been shown to occur in the Orion Nebula. The magnetic field compression may also amplify the local cosmic-ray density. The pressure in the observed magnetic field balances the outward forces, suggesting that the observed geometry is a natural consequence of the formation of a star cluster within a molecular cloud.


Astronomy and Astrophysics | 2015

The Herschel Dwarf Galaxy Survey - I. Properties of the low-metallicity ISM from PACS spectroscopy

D. Cormier; S. Madden; V. Lebouteiller; Nicholas Paul Abel; Sacha Hony; F. Galliano; A. Rémy-Ruyer; Frank Bigiel; M. Baes; A. Boselli; M. Chevance; A. Cooray; I. De Looze; V. Doublier; M. Galametz; T. M. Hughes; O. Ł. Karczewski; M.-Y. Lee; Nanyao Lu; L. Spinoglio

Context. The far-infrared (FIR) lines are important tracers of the cooling and physical conditions of the interstellar medium (ISM) and are rapidly becoming workhorse diagnostics for galaxies throughout the universe. There are clear indications of a different behavior of these lines at low metallicity that needs to be explored. Aims. Our goal is to explain the main differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies, and how this translates in ISM properties. Methods. We present Herschel/PACS spectroscopic observations of the [C ii] 157 μm, [O i] 63 and 145 μm, [O iii] 88 μm, [N ii] 122 and 205 μm, and [N iii] 57 μm fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. Results. We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of [O iii]88/[N ii]122 and [N iii]57/[N ii]122 are high, indicative of hard radiation fields. In the photodissociation region (PDR), the [C ii]157/[O i]63 ratio is slightly higher than in metal-rich galaxies, with a small increase with metallicity, and the [O i]145/[O i]63 ratio is generally lower than 0.1, demonstrating that optical depth effects should be small on the scales probed. The [O iii]88/[O i]63 ratio can be used as an indicator of the ionized gas/PDR filling factor, and is found to be ~4 times higher in the dwarfs than in metal-rich galaxies. The high [C ii]/LTIR, [O i]/LTIR, and [O iii]/LTIR ratios, which decrease with increasing LTIR and LTIR/LB, are interpreted as a combination of moderate far-UV fields and a low PDR covering factor. Harboring compact phases of a low filling factor and a large volume filling factor of diffuse gas, the ISM of low-metallicity dwarf galaxies has a more porous structure than that of metal-rich galaxies.


Astronomy and Astrophysics | 2012

The nature of the interstellar medium of the starburst low-metallicity galaxy Haro 11: a multi-phase model of the infrared emission ⋆

D. Cormier; V. Lebouteiller; S. Madden; Nicholas Paul Abel; Sacha Hony; F. Galliano; M. Baes; M. J. Barlow; A. Cooray; I. De Looze; M. Galametz; O. L. Karczewski; T. J. Parkin; A. Rémy; Marc Sauvage; L. Spinoglio; C. D. Wilson; R. Wu

Context. The low-metallicity interstellar medium (ISM) is profoundly different from that of normal systems, being clumpy with low dust abundance and little CO-traced molecular gas. Yet many dwarf galaxies in the nearby universe are actively forming stars. As the complex ISM phases are spatially mixed with each other, detailed modeling is needed to understand the gas emission and subsequent composition and structure of the ISM. Aims. Our goal is to describe the multi-phase ISM of the infrared bright low-metallicity galaxy Haro 11, dissecting the photoionised and photodissociated gas components. Methods. We present observations of the mid-infrared and far-infrared fine-structure cooling lines obtained with the Spitzer/IRS and Herschel/PACS spectrometers. We use the spectral synthesis code Cloudy to methodically model the ionised and neutral gas from which these lines originate. Results. We find that the mid- and far-infrared lines account for ∼1% of the total infrared luminosity LTIR, acting as major coolants of the gas. Haro 11 is undergoing a phase of intense star formation, as traced by the brightest line, [O iii ]8 8μm, with L[O III]/LTIR ∼ 0.3%, and high ratios of [Ne iii]/[Ne ii ]a nd [Siv]/[S iii]. Due to their different origins, the observed lines require a multi-phase modeling comprising: a compact H ii region, dense fragmented photodissociation regions (PDRs), a diffuse extended low-ionisation/neutral gas which has a volume filling factor of at least 90%, and porous warm dust in proximity to the stellar source. For a more realistic picture of the ISM of Haro 11 we would need to model the clumpy source and gas structures. We combine these 4 model components to explain the emission of 17 spectral lines, investigate the global energy balance of the galaxy through its spectral energy distribution, and establish a phase mass inventory. While the ionic emission lines of Haro 11 essentially originate from the dense H ii region component, a diffuse low-ionisation gas is needed to explain the [Ne ii], [N ii], and [C ii] line intensities. The [O iii ]8 8μm line intensity is not fully reproduced by our model, hinting towards the possible presence of yet another low-density high-ionisation medium. The [O i] emission is consistent with a dense PDR of low covering factor, and we find no evidence for an X-ray dominated component. The PDR component accounts for only 10% of the [C ii] emission. Magnetic fields, known to be strong in star-forming regions, may dominate the pressure in the PDR. For example, for field strengths of the order of 100 μG, up to 50% of the [C ii] emission may come from the PDR.


The Astrophysical Journal | 2004

Physical Conditions in Orion's Veil

Nicholas Paul Abel; Crystal Lee Brogan; Gary J. Ferland; C. R. O'Dell; Gargi Shaw; T. H. Troland

Orions veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion Nebula. It is visible in 21 cm H I absorption and in optical and UV absorption lines of H I and other species. Toward θ1 Ori C, the veil has two remarkable properties, a high magnetic field (≈100 μG) and a surprising lack of H2, given its total column density. Here we compute photoionization models of the veil to establish its gas density and its distance from θ1 Ori C. We use a greatly improved model of the H2 molecule that determines level populations in 105 rotational/vibrational levels and provides improved estimates of H2 destruction via the Lyman-Werner bands. Our best-fit photoionization models place the veil 1-3 pc in front of the star at a density of 103-104 cm-3. Magnetic energy dominates the energy of nonthermal motions in at least one of the 21 cm H I velocity components. Therefore, the veil is the first interstellar environment in which magnetic dominance appears to exist. We find that the low ratio of H2/H0 (<10-4) is a consequence of high UV flux incident on the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.


Astronomy and Astrophysics | 2014

The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey - A ground-based follow-up survey of CO(1–0), CO(2–1), and CO(3–2)

D. Cormier; S. Madden; V. Lebouteiller; Sacha Hony; Susanne Aalto; Francesco Costagliola; Annie Hughes; A. Rémy-Ruyer; Nicholas Paul Abel; E. Bayet; Frank Bigiel; John M. Cannon; Robert J. Cumming; M. Galametz; F. Galliano; Serena Viti; R. Wu

Context. Observations of nearby starburst and spiral galaxies have revealed that molecular gas is the driver of star formation. However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds in these environments. Aims. We aim to quantify the molecular gas reservoir in a subset of 6 galaxies from the Herschel Dwarf Galaxy Survey with newly acquired CO data and to link this reservoir to the observed star formation activity. Methods. We present CO(1-0), CO(2-1), and CO(3-2) observations obtained at the ATNE Mopra 22-m, APEX, and IRAM 30-m telescopes, as well as [CII] 157 mu m and [OI] 63 mu m observations obtained with the Herschel/PACS spectrometer in the 6 low-metallicity dwarf galaxies: Haro 11, Mrk 1089, Mrk 930, NGC 4861, NGC 625, and UM 311. We derived their molecular gas masses from several methods, including using the CO-to-H-2 conversion factor X-CO (both Galactic and metallicity-scaled values) and dust measurements. The molecular and atomic gas reservoirs were compared to the star formation activity. We also constrained the physical conditions of the molecular clouds using the non-LTE code RADEX and the spectral synthesis code Cloudy. Results. We detect CO in 5 of the 6 galaxies, including first detections in Haro 11 (Z similar to 0.4 Z(circle dot)), Mrk 930 (0.2 Z(circle dot)), and UM 311 (0.5 Z(circle dot)), but CO remains undetected in NGC 4861 (0.2 Z(circle dot)). The CO luminosities are low, while [CII] is bright in these galaxies, resulting in [CII]/CO(1-0) >= 10 000. Our dwarf galaxies are in relatively good agreement with the Schmidt-Kennicutt relation for total gas. They show short molecular depletion timescales, even when considering metallicity-scaled X-CO factors. Those galaxies are dominated by their HI gas, except Haro 11, which has high star formation efficiency and is dominated by ionized and molecular gas. We determine the mass of each ISM phase in Haro 11 using Cloudy and estimate an equivalent X-CO factor that is 10 times higher than the Galactic value. Overall, our results confirm the emerging picture that CO suffers from significant selective photodissociation in low-metallicity dwarf galaxies.


The Astrophysical Journal | 2006

Physical Conditions in Orion’s Veil. II. A Multicomponent Study of the Line of Sight toward the Trapezium

Nicholas Paul Abel; Gary J. Ferland; C. R. O'Dell; Gargi Shaw; T. H. Troland

Orions Veil is an absorbing screen that lies along the line of sight to the Orion H II region. It consists of two or more layers of gas that must lie within a few parsecs of the Trapezium cluster. Our previous work considered the Veil as a whole and found that the magnetic field dominates the energetics of the gas in at least one component. Here we use high-resolution STIS UV spectra that resolve the two velocity components in absorption and determine the conditions in each. We derive a volume hydrogen density, 21 cm spin temperature, turbulent velocity, and kinetic temperature for each. We combine these estimates with magnetic field measurements to find that magnetic energy significantly dominates turbulent and thermal energies in one component, while the other component is close to equipartition between turbulent and magnetic energies. We observe H2 absorption for highly excited v, J levels that are photoexcited by the stellar continuum, and detect blueshifted S+2 and P+2 ions. These ions must arise from ionized gas between the mostly neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We find that this layer of ionized gas is also responsible for He I λ3889 absorption toward the Veil, which resolves a 40 year old debate on the origin of He I absorption toward the Trapezium. Finally, we determine that the ionized and mostly atomic layers of the Veil will collide in less than 85,000 yr.


Monthly Notices of the Royal Astronomical Society | 2006

The H+ region contribution to [C ii] 158-μm emission

Nicholas Paul Abel

The [C II] 158-μm line is an important emission-line diagnostic in photodissociation regions (PDRs), but this emission line can also emerge from ionized gas. This work calculates the contribution of [C II] emission from ionized gas over a wide range of parameter space by considering the simplified case of an H + region and PDR in pressure equilibrium. Additionally, these calculations also predict the strong correlation observed between [N n] 205-μm emission and [C n] discussed by previous authors. Overall, the results of these calculations have wide-ranging applications to the interpretation of [C II] emission in astrophysical environments.

Collaboration


Dive into the Nicholas Paul Abel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gargi Shaw

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. A. M. van Hoof

Royal Observatory of Belgium

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crystal Lee Brogan

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge