Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Polakowski is active.

Publication


Featured researches published by Nicholas Polakowski.


Journal of Virology | 2007

Human T-Cell Leukemia Virus Type 1 (HTLV-1) bZIP Protein Interacts with the Cellular Transcription Factor CREB To Inhibit HTLV-1 Transcription

Isabelle Lemasson; Nicholas Polakowski; Patrick Hivin; Marie-Hélène Cavanagh; Sabine Thébault; Benoit Barbeau; Jennifer K. Nyborg; Jean-Michel Mesnard

ABSTRACT The complex human T-cell leukemia virus type 1 (HTLV-1) retrovirus encodes several proteins that are unique to the virus within its 3′-end region. Among them, the viral transactivator Tax and posttranscriptional regulator Rex are well characterized, and both positively regulate HTLV-1 viral expression. Less is known about the other regulatory proteins encoded in this region of the provirus, including the recently discovered HBZ protein. HBZ has been shown to negatively regulate basal and Tax-dependent HTLV-1 transcription through its ability to interact with specific basic-leucine zipper (bZIP) proteins. In the present study, we found that HBZ reduces HTLV-1 transcription and virion production. We then characterized the interaction between HBZ and the cellular transcription factor CREB. CREB plays a critical role in Tax-mediated HTLV-1 transcription by forming a complex with Tax that binds to viral cyclic AMP-response elements (CREs) located within the viral promoter. We found that HBZ and CREB interact in vivo and directly in vitro, and this interaction occurs through the bZIP domain of each protein. We also found that CREM-Ia and ATF-1, which share significant homology in their bZIP domains with the bZIP domain of CREB, interact with HBZ-bZIP. The interaction between CREB and HBZ prevents CREB binding to the viral CRE elements in vitro and in vivo, suggesting that the reduction in HTLV-1 transcription by HBZ is partly due to the loss of CREB at the promoter. We also found that HBZ displaces CREB from a cellular CRE, suggesting that HBZ may deregulate CREB-dependent cellular gene expression.


Journal of Biological Chemistry | 2008

An Interaction between the Human T Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor (HBZ) and the KIX Domain of p300/CBP Contributes to the Down-regulation of Tax-dependent Viral Transcription by HBZ

Isabelle Clerc; Nicholas Polakowski; Charlotte André-Arpin; Pamela R. Cook; Benoit Barbeau; Jean-Michel Mesnard; Isabelle Lemasson

Activation of human T cell leukemia virus type 1 (HTLV-1) transcription is established through the formation of protein complexes on the viral promoter that are essentially composed of the cellular basic leucine zipper (bZIP) transcription factor cAMP-response element-binding protein (CREB (or certain other members of the ATF/CREB family), the HTLV-1-encoded transactivator Tax, and the pleiotropic cellular coactivators p300/CBP. HTLV-1 bZIP factor (HBZ) is a protein encoded by HTLV-1 that contains a bZIP domain and functions to repress HTLV-1 transcription. HBZ has been shown to repress viral transcription by dimerizing with CREB, which occurs specifically through the bZIP domain in each protein, and preventing CREB from binding to the DNA. However, we previously found that HBZ causes only partial removal of CREB from a chromosomally integrated viral promoter, and more importantly, an HBZ mutant lacking the COOH-terminal bZIP domain retains the ability to repress viral transcription. These results suggest that an additional mechanism contributes to HBZ-mediated repression of HTLV-1 transcription. In this study, we show that HBZ binds directly to the p300 and CBP coactivators. Two LXXLL-like motifs located within the NH2-terminal region of HBZ are important for this interaction and specifically mediate binding to the KIX domain of p300/CBP. We provide evidence that this interaction interferes with the ability of Tax to bind p300/CBP and thereby inhibits the association of the coactivators with the viral promoter. Our findings demonstrate that HBZ utilizes a bipartite mechanism to repress viral transcription.


Molecular and Cellular Biology | 2004

Transcription Regulatory Complexes Bind the Human T-Cell Leukemia Virus 5′ and 3′ Long Terminal Repeats To Control Gene Expression

Isabelle Lemasson; Nicholas Polakowski; Paul J. Laybourn; Jennifer K. Nyborg

ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that integrates randomly into the T-cell genome. Two long terminal repeats (LTRs) flank the integrated provirus. The upstream and downstream LTRs carry identical promoter sequences. Studies with other retroviruses suggest that the downstream promoter is silent and that RNA polymerases initiating at the upstream promoter proceed through the 3′ LTR. In this study, we used the chromatin immunoprecipitation assay to compare the binding of transcription regulatory proteins at both the upstream and downstream promoters in HTLV-1-infected cell lines and adult T-cell leukemia-lymphoma cells. Unexpectedly, we detected a nearly equal distribution of activator (Tax, CREB, ATF-1, ATF-2, c-Fos, and c-Jun) and regulatory protein (CBP, p300, TAFII250, and polymerase II) binding at both the upstream and downstream promoters. Consistent with this observation, we found that the downstream promoter was transcriptionally active, suggesting that the two promoters are functionally equivalent. We also detected asymmetrical binding of histone deacetylases (HDAC-1, -2, and -3) at both promoters. All three HDACs strongly repressed Tax transactivation, and this repression correlated with displacement of Tax from the HTLV-1 promoter. These effects were reciprocal, as Tax expression reversed HDAC repression and displaced HDACs from the HTLV-1 promoter. These data suggest that HTLV-1 transcriptional regulation at both the 5′ and 3′ LTRs is mediated, in part, through the mutually exclusive binding of Tax and HDACs at the proviral promoters.


Journal of Virology | 2012

Human T-Cell Leukemia Virus Type 1 (HTLV-1) bZIP Factor Requires Cellular Transcription Factor JunD To Upregulate HTLV-1 Antisense Transcription from the 3′ Long Terminal Repeat

Hélène Gazon; Isabelle Lemasson; Nicholas Polakowski; Raymond Césaire; Masao Matsuoka; Benoit Barbeau; Jean-Michel Mesnard; Jean-Marie Peloponese

ABSTRACT Infection with the human T-cell leukemia virus type 1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia (ATL), a fatal malignancy characterized by the uncontrolled proliferation of virally infected CD4+ T cells. The HTLV-1 basic leucine zipper factor (HBZ) is believed to contribute to development and maintenance of ATL. Unlike the other HTLV-1 genes, the hbz gene is encoded on the complementary strand of the provirus and therefore is not under direct control of the promoter within the 5′ long terminal repeat (LTR) of the provirus. This promoter can undergo inactivating genetic or epigenetic changes during the course of ATL that eliminates expression of all viral genes except that of hbz. In contrast, repressive modifications are not known to occur on the hbz promoter located in the 3′ LTR, and hbz expression has been consistently detected in all ATL patient samples. Although Sp1 regulates basal transcription from the HBZ promoter, other factors that activate transcription remain undefined. In this study, we used a proviral reporter construct deleted of the 5′ LTR to show that HBZ upregulates its own expression through cooperation with JunD. Activation of antisense transcription was apparent in serum-deprived cells in which the level of JunD was elevated, and elimination of JunD expression by gene knockout or shRNA-mediated knockdown abrogated this effect. Activation through HBZ and JunD additionally required Sp1 binding at the hbz promoter. These data favor a model in which JunD is recruited to the promoter through Sp1, where it heterodimerizes with HBZ thereby enhancing its activity. Separately, hbz gene expression led to an increase in JunD abundance, and this effect correlated with emergence of features of transformed cells in immortalized fibroblasts. Overall, our results suggest that JunD represents a novel therapeutic target for the treatment of ATL.


Journal of Biological Chemistry | 2006

Tax-dependent Displacement of Nucleosomes during Transcriptional Activation of Human T-Cell Leukemia Virus Type 1

Isabelle Lemasson; Nicholas Polakowski; Paul J. Laybourn; Jennifer K. Nyborg

The human T-cell leukemia virus type 1 (HTLV-1) is integrated into the host cell DNA and assembled into nucleosomes. Within the repressive chromatin environment, the virally encoded Tax protein mediates the recruitment of the coactivators CREB-binding protein/p300 to the HTLV-1 promoter, located within the long terminal repeats (LTRs) of the provirus. These proteins carry acetyltransferase activity that is essential for strong transcriptional activation of the virus in the context of chromatin. Consistent with this, the amino-terminal tails of nucleosomal histones at the viral promoter are acetylated in Tax-expressing cells. We have developed a system in which we transfect Tax into cells carrying integrated copies of the HTLV-1 LTR driving the luciferase gene to analyze changes in “activating” histone modifications at the LTR. Unexpectedly, Tax transactivation led to an apparent reduction of these modifications at the HTLV-1 promoter and downstream region that correlates with a similar reduction in histone H3 and linker histone H1. Micrococcal nuclease protection analysis showed that less LTR-luciferase DNA is nucleosomal in Tax-expressing cells. Furthermore, nucleosome depletion correlated with RNA polymerase II recruitment and loss of SWI/SNF. The M47 Tax mutant, deficient in HTLV-1 transcriptional activation, was also defective for nucleosome depletion. Although this mutant formed complexes with CREB and p300 at the HTLV-1 promoter in vivo, it was unable to mediate RNA polymerase II recruitment or SWI/SNF displacement. These results support a model in which nucleosomes are depleted from the LTR and transcribed region during Tax-mediated transcriptional activation and correlate RNA polymerase II recruitment with nucleosome depletion.


Journal of Molecular Biology | 2011

HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP.

Pamela R. Cook; Nicholas Polakowski; Isabelle Lemasson

The complex retrovirus human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Deregulation of cellular transcription is thought to be an important step for T-cell transformation caused by viral infection. HTLV-1 basic leucine zipper factor (HBZ) is one of the viral proteins believed to be involved in this process, as it deregulates the expression of numerous cellular genes. In the context of the provirus, HBZ represses HTLV-1 transcription, in part, by binding to the homologous cellular coactivators p300 and CBP. These coactivators play a central role in transcriptional regulation. In this study, we determined that HBZ binds with high affinity to the KIX domain of p300/CBP. This domain contains two binding surfaces that are differentially targeted by multiple cellular factors. We show that two φXXφφ motifs in the activation domain of HBZ mediate binding to a single surface of the KIX domain, the mixed-lineage leukemia (MLL) binding surface. Formation of this interaction inhibits binding of MLL to the KIX domain while enhancing the binding of the transcription factor c-Myb to the opposite surface of KIX. Consequently, HBZ inhibits transcriptional activation mediated by MLL and enhances activation mediated by c-Myb. CREB, which binds the same surface of KIX as c-Myb, also exhibited an increase in activity through HBZ. These results indicate that HBZ is able to alter gene expression by competing with transcription factors for the occupancy of one surface of KIX while enhancing the binding of factors to the other surface.


Nucleic Acids Research | 2012

The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP

Torsten Wurm; Diana Grace Wright; Nicholas Polakowski; Jean-Michel Mesnard; Isabelle Lemasson

The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection.


Retrovirology | 2010

Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain

Nicholas Polakowski; Heather L. Gregory; Jean-Michel Mesnard; Isabelle Lemasson

BackgroundHuman T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators.ResultsTo determine the effects of these interactions on transcription, we performed a preliminary microarray analysis, comparing levels of gene expression in cells with wild-type HBZ versus cells with HBZ mutated in its LXXLL motifs. DKK1, which encodes the secreted Wnt signaling inhibitor, Dickkopf-1 (Dkk1), was confirmed to be transcriptionally activated by HBZ, but not its mutant. Dkk1 plays a major role in the development of bone lesions caused by multiple myeloma. In parallel with the initial findings, activation of Dkk1 expression by HBZ was abrogated by siRNA-mediated knockdown of p300/CBP or by a truncated form of p300 containing the KIX domain. Among HTLV-1-infected T-cell lines tested, the detection of Dkk1 mRNA partially correlated with a threshold level of HBZ mRNA. In addition, an uninfected and an HTLV-1-infected T-cell line transfected with an HBZ expression vector exhibited de novo and increased DKK1 transcription, respectively. In contrast to HBZ, The HTLV-1 Tax protein repressed Dkk1 expression.ConclusionsThese data indicate that HBZ activates Dkk1 expression through its interaction with p300/CBP. However, this effect is limited in HTLV-1-infected T-cell lines, which in part, may be due to suppression of Dkk1 expression by Tax. Consequently, the ability of HBZ to regulate expression of Dkk1 and possibly other cellular genes may only be significant during late stages of ATL, when Tax expression is repressed.


Oncotarget | 2016

Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1

Diana Grace Wright; Claire Marchal; Kimson Hoang; John A. Ankney; Stephanie T. Nguyen; Amanda W. Rushing; Nicholas Polakowski; Benoit Miotto; Isabelle Lemasson

Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples.


Journal of Virology | 2014

HBZ Stimulates Brain-Derived Neurotrophic Factor/TrkB Autocrine/Paracrine Signaling To Promote Survival of Human T-Cell Leukemia Virus Type 1-Infected T Cells

Nicholas Polakowski; Marie Terol; Kimson Hoang; Isabelle Nash; Sylvain Laverdure; Hélène Gazon; Gilda Belrose; Jean-Michel Mesnard; Raymond Césaire; Jean-Marie Peloponese; Isabelle Lemasson

ABSTRACT Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal proliferation, survival, and plasticity. These effects occur through autocrine and paracrine signaling events initiated by interactions between secreted BDNF and its high-affinity receptor, TrkB. A BDNF/TrkB autocrine/paracrine signaling loop has additionally been implicated in augmenting the survival of cells representing several human cancers and is associated with poor patient prognosis. Adult T-cell leukemia (ATL) is a fatal malignancy caused by infection with the complex retrovirus human T-cell leukemia virus type 1 (HTLV-1). In this study, we found that the HTLV-1-encoded protein HBZ activates expression of BDNF, and consistent with this effect, BDNF expression is elevated in HTLV-1-infected T-cell lines compared to uninfected T cells. Expression of TrkB is also higher in HTLV-1-infected T-cell lines than in uninfected T cells. Furthermore, levels of both BDNF and TrkB mRNAs are elevated in peripheral blood mononuclear cells (PBMCs) from ATL patients, and ATL patient sera contain higher concentrations of BDNF than sera from noninfected individuals. Finally, chemical inhibition of TrkB signaling increases apoptosis in HTLV-1-infected T cells and reduces phosphorylation of glycogen synthase kinase 3β (GSK-3β), a downstream target in the signaling pathway. These results suggest that HBZ contributes to an active BDNF/TrkB autocrine/paracrine signaling loop in HTLV-1-infected T cells that enhances the survival of these cells. IMPORTANCE Infection with human T-cell leukemia virus type 1 (HTLV-1) can cause a rare form of leukemia designated adult T-cell leukemia (ATL). Because ATL patients are unresponsive to chemotherapy, this malignancy is fatal. As a retrovirus, HTLV-1 integrates its genome into a host cell chromosome in order to utilize host factors for replication and expression of viral proteins. However, in infected cells from ATL patients, the viral genome is frequently modified to block expression of all but a single viral protein. This protein, known as HBZ, is therefore believed to modulate cellular pathways necessary for the leukemic state and the chemotherapeutic resistance of the cell. Here we provide evidence to support this hypothesis. We found that HBZ promotes a BDNF/TrkB autocrine/paracrine signaling pathway that is known to enhance the survival and chemotherapeutic resistance of other types of cancer cells. It is possible that inhibition of this pathway may improve treatments for ATL.

Collaboration


Dive into the Nicholas Polakowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimson Hoang

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Barbeau

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Hongjin Han

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Pamela R. Cook

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge