Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas S. C. Price is active.

Publication


Featured researches published by Nicholas S. C. Price.


The Journal of Neuroscience | 2008

Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression.

Michael R. Ibbotson; Nathan A. Crowder; Shaun L. Cloherty; Nicholas S. C. Price; Michael J. Mustari

Humans use saccadic eye movements to make frequent gaze changes, yet the associated full-field image motion is not perceived. The theory of saccadic suppression has been proposed to account for this phenomenon, but it is not clear whether suppression originates from a retinal signal at saccade onset or from the brain before saccade onset. Perceptually, visual sensitivity is reduced before saccades and enhanced afterward. Over the same time period, the perception of time is compressed and even inverted. We explore the origins and neural basis of these effects by recording from neurons in the dorsal medial superior temporal area (MSTd) of alert macaque monkeys. Neuronal responses to flashed presentations of a textured pattern presented at random times relative to saccades exhibit a stereotypical pattern of modulation. Response amplitudes are strongly suppressed for flashes presented up to 90 ms before saccades. Immediately after the suppression, there is a period of 200–450 ms in which flashes generate enhanced response amplitudes. Our results show that (1) MSTd is not directly suppressed, rather suppression is inherited from earlier visual areas; (2) early suppression of the visual system must be of extra-retinal origin; (3) postsaccadic enhancement of neural activity occurs in MSTd; and (4) the enhanced responses have reduced latencies. As a whole, these observations reveal response properties that could account for perceptual observations relating to presaccadic suppression, postsaccadic enhancement and time compression.


Journal of The Optical Society of America A-optics Image Science and Vision | 2007

Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information

Szonya Durant; Colin W. G. Clifford; Nathan A. Crowder; Nicholas S. C. Price; Michael R. Ibbotson

When cat V1/V2 cells are adapted to contrast at their optimal orientation, a reduction in gain and/or a shift in the contrast response function is found. We investigated how these factors combine at the population level to affect the accuracy for detecting variations in contrast. Using the contrast response function parameters from a physiologically measured population, we model the population accuracy (using Fisher information) for contrast discrimination. Adaptation at 16%, 32%, and 100% contrast causes a shift in peak accuracy. Despite an overall drop in firing rate over the whole population, accuracy is enhanced around the adapted contrast and at higher contrasts, leading to greater efficiency of contrast coding at these levels. The estimated contrast discrimination threshold curve becomes elevated and shifted toward higher contrasts after adaptation, as has been found previously in human psychophysical experiments.


The Journal of Physiology | 2007

Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat.

Markus Hietanen; Nathan A. Crowder; Nicholas S. C. Price; Michael R. Ibbotson

Adaptation is a ubiquitous property of the visual system. Adaptation often improves the ability to discriminate between stimuli and increases the operating range of the system, but is also associated with a reduced ability to veridically code stimulus attributes. Adaptation to luminance levels, contrast, orientation, direction and spatial frequency has been studied extensively, but knowledge about adaptation to image speed is less well understood. Here we examined how the speed tuning of neurons in cat primary visual cortex was altered after adaptation to speeds that were slow, optimal, or fast relative to each neurons speed response function. We found that the preferred speed (defined as the speed eliciting the peak firing rate) of the neurons following adaptation was dependent on the speed at which they were adapted. At the population level cells showed decreases in preferred speed following adaptation to speeds at or above the non‐adapted speed, but the preferred speed did not change following adaptation to speeds lower than the non‐adapted peak. Almost all cells showed response gain control (reductions in absolute firing capacity) following speed adaptation. We also investigated the speed dependence of contrast adaptation and found that most cells showed contrast gain control (rightward shifts of their contrast response functions) and response gain control following adaptation at any speed. We conclude that contrast adaptation may produce the response gain control associated with speed adaptation, but shifts in preferred speed require an additional level of processing beyond contrast adaptation. A simple model is presented that is able to capture most of the findings.


Vision Research | 2004

Tuning properties of radial phantom motion aftereffects

Nicholas S. C. Price; John A. Greenwood; Michael R. Ibbotson

Motion aftereffects are normally tested in regions of the visual field that have been directly exposed to motion (local or concrete MAEs). We compared concrete MAEs with remote or phantom MAEs, in which motion is perceived in regions not previously adapted to motion. Our aim was to study the spatial dependencies and spatiotemporal tuning of phantom MAEs generated by radially expanding stimuli. For concrete and phantom MAEs, peripheral stimuli generated stronger aftereffects than central stimuli. Concrete MAEs display temporal frequency tuning, while phantom MAEs do not show categorical temporal frequency or velocity tuning. We found that subjects may use different response strategies to determine motion direction when presented with different stimulus sizes. In some subjects, as adapting stimulus size increased, phantom MAE strength increased while the concrete MAE strength decreased; in other subjects, the opposite effects were observed. We hypothesise that these opposing findings reflect interplay between the adaptation of global motion sensors and local motion sensors with inhibitory interconnections.


Current Biology | 2006

Neural basis of time changes during saccades

Michael R. Ibbotson; Nathan A. Crowder; Nicholas S. C. Price

This work was made possible through collaboration with M. Mustari and S. Ono at the Yerkes National Primate Research Centre, Atlanta, USA, where the monkey recordings were conducted. Funding came from the Australian Research Council Centre for Excellence in Vision Science, an ARC linkage grant and from the NIH.


The Journal of Physiology | 2008

Dynamic contrast change produces rapid gain control in visual cortex

Nathan A. Crowder; Markus Hietanen; Nicholas S. C. Price; Colin W. G. Clifford; Michael R. Ibbotson

During normal vision, objects moving in the environment, our own body movements and our eye movements ensure that the receptive fields of visual neurons are being presented with continually changing contrasts. Thus, the visual input during normal behaviour differs from the type of stimuli traditionally used to study contrast coding, which are presented in a step‐like manner with abrupt changes in contrast followed by prolonged exposure to a constant stimulus. The abrupt changes in contrast typically elicit brief periods of intense firing with low variability called onset transients. Onset transients provide the visual system with a powerful and reliable cue that the visual input has changed. In this paper we investigate visual processing in the primary visual cortex of cats in response to stimuli that change contrast dynamically. We show that 1–4 s presentations of dynamic increases and decreases in contrast can generate stronger contrast gain control than several minutes exposure to a stimulus of constant contrast. Thus, transient mechanisms of contrast coding are not only less variable than sustained responses but are also more rapid and flexible. Finally, we propose a quantitative model of contrast coding which accounts for changes in spike rate over time in response to dynamically changing image contrast.


Journal of Neurophysiology | 2009

Direction and Contrast Tuning of Macaque MSTd Neurons During Saccades

Nathan A. Crowder; Nicholas S. C. Price; Michael J. Mustari; Michael R. Ibbotson

Saccades are rapid eye movements that change the direction of gaze, although the full-field image motion associated with these movements is rarely perceived. The attenuation of visual perception during saccades is referred to as saccadic suppression. The mechanisms that produce saccadic suppression are not well understood. We recorded from neurons in the dorsal medial superior temporal area (MSTd) of alert macaque monkeys and compared the neural responses produced by the retinal slip associated with saccades (active motion) to responses evoked by identical motion presented during fixation (passive motion). We provide evidence for a neural correlate of saccadic suppression and expand on two contentious results from previous studies. First, we confirm the finding that some neurons in MSTd reverse their preferred direction during saccades. We quantify this effect by calculating changes in direction tuning index for a large cell population. Second, it has been noted that neural activity associated with saccades can arrive in the parietal cortex <or=30 ms earlier than activity produced by similar visual stimulation during fixation. This led to the question of whether the saccade-related responses were visual in origin or were motor signals arising from saccade-planning areas of the brain. By comparing the responses to saccades made over textured backgrounds of different contrasts, we provide strong evidence that saccade-related responses were visual in origin. Refinements of the possible models of saccadic suppression are discussed.


Journal of Vision | 2014

Reflexive tracking eye movements and motion perception: One or two neural populations?

Julieanne Blum; Nicholas S. C. Price

Motion-sensitive neurons in the middle temporal (MT) and medial superior temporal (MST) areas perform the sensory analysis required for both motion perception and controlling smooth eye movements. The perceptual and oculomotor systems are characterized by high variability, even when responding to identical stimulus repetitions. If a single population of neurons performs the motion analysis driving perception and eye movements, errors in perception and action might show similar direction-dependent biases, or their variability might be correlated across trials. However, previous studies have produced conflicting reports of the presence of significant single-trial correlations between motion perception and the velocity of smooth pursuit, a volitional tracking eye movement. We studied ocular following, a reflexive tracking eye movement, simultaneously measuring eye movement direction and perceived direction of a moving random dot field. Oculomotor errors were largest for near-cardinal directions, providing the first evidence for cardinal repulsion in reflexive eye movements. Biases in perceptual and oculomotor errors were correlated across test directions, but not across single trials with the same direction. Based on the similar direction-dependent anisotropies in eye movements and perception, there is reason to believe that partially overlapping populations of sensory neurons underlie motion perception and oculomotor behaviors, with independent downstream sources of noise masking trial-by-trial correlations between perception and action.


The Journal of Neuroscience | 2016

Rapid Adaptation Induces Persistent Biases in Population Codes for Visual Motion

Elizabeth Zavitz; Hsin-Hao Yu; Elise G. Rowe; Marcello G. P. Rosa; Nicholas S. C. Price

Each visual experience changes the neural response to subsequent stimuli. If the brain is unable to incorporate these encoding changes, the decoding, or perception, of subsequent stimuli is biased. Although the phenomenon of adaptation pervades the nervous system, its effects have been studied mainly in isolation, based on neuronal encoding changes induced by an isolated, prolonged stimulus. To understand how adaptation-induced biases arise and persist under continuous, naturalistic stimulation, we simultaneously recorded the responses of up to 61 neurons in the marmoset (Callithrix jacchus) middle temporal area to a sequence of directions that changed every 500 ms. We found that direction-specific adaptation following only 0.5 s of stimulation strongly affected encoding for up to 2 s by reducing both the gain and the spike count correlations between pairs of neurons with preferred directions close to the adapting direction. In addition, smaller changes in bandwidth and preferred direction were observed in some animals. Decoding individual trials of adaptation-affected activity in simultaneously recorded neurons predicted repulsive biases that are consistent with the direction aftereffect. Surprisingly, removing spike count correlations by trial shuffling did not impact decoding performance or bias. When adaptation had the largest effect on encoding, the decoder made the most errors. This suggests that neural and perceptual repulsion is not a mechanism to enhance perceptual performance but is instead a necessary consequence of optimizing neural encoding for the identification of a wide range of stimulus properties in diverse temporal contexts. SIGNIFICANCE STATEMENT Although perception depends upon decoding the pattern of activity across a neuronal population, the encoding properties of individual neurons are unreliable: a single neurons response to repetitions of the same stimulus is variable, and depends on both its spatial and temporal context. In this manuscript, we describe the complete cascade of adaptation-induced effects in sensory encoding and show how they predict population decoding errors consistent with perceptual biases. We measure the time course of adaptation-induced changes to the response properties of neurons in isolation, and to the correlation structure across pairs of simultaneously recorded neurons. These results provide novel insight into how and for how long adaptation affects the neural code, particularly during continuous, naturalistic vision.


Journal of Vision | 2012

Adaptation to direction statistics modulates perceptual discrimination.

Nicholas S. C. Price; Danielle L. Prescott

Perception depends on the relative activity of populations of sensory neurons with a range of tunings and response gains. Each neurons tuning and gain are malleable and can be modified by sustained exposure to an adapting stimulus. Here, we used a combination of human psychophysical testing and models of neuronal population decoding to assess how rapid adaptation to moving stimuli might change neuronal tuning and thereby modulate direction perception. Using a novel motion stimulus in which the direction changed every 10 ms, we demonstrated that 1,500 ms of adaptation to a distribution of directions was capable of modifying human psychophysical direction discrimination performance. Consistent with previous reports, we found perceptual repulsion following adaptation to a single direction. Notably, compared with a uniform adaptation condition in which all motion directions were equiprobable, discrimination was impaired after adaptation to a stimulus comprising only directions ± 30-60° from the discrimination boundary and enhanced after adaptation to the complementary range of directions. Thus, stimulus distributions can be selectively chosen to either impair or improve discrimination performance through adaptation. A neuronal population decoding model incorporating adaptation-induced repulsive shifts in direction tuning curves can account for most aspects of our psychophysical data; however, changes in neuronal gain are sufficient to account for all aspects of our psychophysical data.

Collaboration


Dive into the Nicholas S. C. Price's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Hietanen

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Colin W. G. Clifford

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Bourne

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Seiji Ono

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge