Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Santoro is active.

Publication


Featured researches published by Nicholas Santoro.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase.

Rebecca Van Acker; Jean-Charles Leplé; Dirk Aerts; Veronique Storme; Geert Goeminne; Bart Ivens; Frédéric Legée; Catherine Lapierre; Kathleen Piens; Marc Van Montagu; Nicholas Santoro; Clifton E. Foster; John Ralph; Wim Soetaert; Gilles Pilate; Wout Boerjan

Significance In the transition from a fossil-based to a bio-based economy, bioethanol will be generated from the lignocellulosic biomass of second-generation biofuel crops, such as poplar. The lignin polymers in the plant cell walls represent the main factor determining the recalcitrance of biomass to enzymatic processing. We have grown genetically modified poplars, down-regulated for cinnamoyl-CoA reductase (CCR), an enzyme in the lignin biosynthetic pathway, in field trials in Belgium and France. We show that wood samples derived from the transgenic trees are more easily processed into ethanol. However, strong down-regulation also affected biomass yield. In conclusion, CCR down-regulation may become a successful strategy to improve biomass processing if the yield penalty can be overcome. Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR–down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.


Plant Journal | 2014

p‐Coumaroyl‐CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon

Deborah L. Petrik; Steven D. Karlen; Cynthia L. Cass; Dharshana Padmakshan; Fachuang Lu; Sarah Liu; Philippe Le Bris; Sébastien Antelme; Nicholas Santoro; Curtis G. Wilkerson; Richard Sibout; Catherine Lapierre; John Ralph; John C. Sedbrook

Grass lignins contain substantial amounts of p-coumarate (pCA) that acylate the side-chains of the phenylpropanoid polymer backbone. An acyltransferase, named p-coumaroyl-CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol-pCA conjugates become incorporated into lignin via oxidative radical coupling, thereby generating the observed pCA appendages; however p-coumarates also acylate arabinoxylans in grasses. To test the authenticity of PMT as a lignin biosynthetic pathway enzyme, we examined Brachypodium distachyon plants with altered BdPMT gene function. Using newly developed cell wall analytical methods, we determined that the transferase was involved specifically in monolignol acylation. A sodium azide-generated Bdpmt-1 missense mutant had no (<0.5%) residual pCA on lignin, and BdPMT RNAi plants had levels as low as 10% of wild-type, whereas the amounts of pCA acylating arabinosyl units on arabinoxylans in these PMT mutant plants remained unchanged. pCA acylation of lignin from BdPMT-overexpressing plants was found to be more than three-fold higher than that of wild-type, but again the level on arabinosyl units remained unchanged. Taken together, these data are consistent with a defined role for grass PMT genes in encoding BAHD (BEAT, AHCT, HCBT, and DAT) acyltransferases that specifically acylate monolignols with pCA and produce monolignol p-coumarate conjugates that are used for lignification in planta.


Journal of Experimental Botany | 2015

Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

Cynthia L. Cass; Antoine Peraldi; Patrick F. Dowd; Yaseen Mottiar; Nicholas Santoro; Steven D. Karlen; Yury V. Bukhman; Cliff E. Foster; Nick Thrower; Laura C. Bruno; Oleg V. Moskvin; Eric T. Johnson; Megan E. Willhoit; Megha Phutane; John Ralph; Shawn D. Mansfield; P. Nicholson; John C. Sedbrook

Highlight Reducing the function of PAL, the first enzyme in the phenylpropanoid pathway, in Brachypodium distachyon alters cell wall composition, increases fungal susceptibility, but minimally affects caterpillar herbivory and abiotic stress tolerance.


Plant Physiology | 2012

Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize

Rajandeep S. Sekhon; Kevin L. Childs; Nicholas Santoro; Cliff E. Foster; C. Robin Buell; Natalia de Leon; Shawn M. Kaeppler

Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses.


Plant Physiology | 2017

Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1

Rebecca Van Acker; Annabelle Déjardin; Sandrien Desmet; Lennart Hoengenaert; Ruben Vanholme; Kris Morreel; Françoise Laurans; Hoon Kim; Nicholas Santoro; Cliff E. Foster; Geert Goeminne; Frédéric Legée; Catherine Lapierre; Gilles Pilate; John Ralph; Wout Boerjan

Down-regulation of CAD1 in poplar leads to different metabolic routes for coniferaldehyde and sinapaldehyde and alters lignin amount and structure, improving the physicochemical properties of wood for saccharification. In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S′(8-8)S′ and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.


Bioenergy Research | 2015

Cell Wall Composition and Bioenergy Potential of Rice Straw Tissues Are Influenced by Environment, Tissue Type, and Genotype

Paul Tanger; Miguel E. Vega-Sánchez; Margaret B. Fleming; Kim Tran; Seema Singh; James B. Abrahamson; Courtney E. Jahn; Nicholas Santoro; Elizabeth Naredo; Marietta Baraoidan; John Danku; David E. Salt; Kenneth L. McNally; Blake A. Simmons; Pamela C. Ronald; Hei Leung; Daniel R. Bush; John K. McKay; Jan E. Leach

Breeding has transformed wild plant species into modern crops, increasing the allocation of their photosynthetic assimilate into grain, fiber, and other products for human use. Despite progress in increasing the harvest index, much of the biomass of crop plants is not utilized. Potential uses for the large amounts of agricultural residues that accumulate are animal fodder or bioenergy, though these may not be economically viable without additional efforts such as targeted breeding or improved processing. We characterized leaf and stem tissue from a diverse set of rice genotypes (varieties) grown in two environments (greenhouse and field) and report bioenergy-related traits across these variables. Among the 16 traits measured, cellulose, hemicelluloses, lignin, ash, total glucose, and glucose yield changed across environments, irrespective of the genotypes. Stem and leaf tissue composition differed for most traits, consistent with their unique functional contributions and suggesting that they are under separate genetic control. Plant variety had the least influence on the measured traits. High glucose yield was associated with high total glucose and hemicelluloses, but low lignin and ash content. Bioenergy yield of greenhouse-grown biomass was higher than field-grown biomass, suggesting that greenhouse studies overestimate bioenergy potential. Nevertheless, glucose yield in the greenhouse predicts glucose yield in the field (ρ = 0.85, p < 0.01) and could be used to optimize greenhouse (GH) and field breeding trials. Overall, efforts to improve cell wall composition for bioenergy require consideration of production environment, tissue type, and variety.


Biotechnology for Biofuels | 2012

A high-throughput core sampling device for the evaluation of maize stalk composition.

German Muttoni; James M. Johnson; Nicholas Santoro; Craig J Rhiner; Karl J Haro von Mogel; Shawn M. Kaeppler; Natalia de Leon

BackgroundA major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Currently, highly accurate and precise robotic analysis systems are available for the evaluation of biomass composition, on a large number of samples, with a variety of pretreatments. However, the lack of an inexpensive and high-throughput process for large scale sampling of biomass resources is still an important limiting factor. Our goal was to develop a simple mechanical maize stalk core sampling device that can be utilized to collect uniform samples of a dimension compatible with robotic processing and analysis, while allowing the collection of hundreds to thousands of samples per day.ResultsWe have developed a core sampling device (CSD) to collect maize stalk samples compatible with robotic processing and analysis. The CSD facilitates the collection of thousands of uniform tissue cores consistent with high-throughput analysis required for breeding, genetics, and production studies. With a single CSD operated by one person with minimal training, more than 1,000 biomass samples were obtained in an eight-hour period. One of the main advantages of using cores is the high level of homogeneity of the samples obtained and the minimal opportunity for sample contamination. In addition, the samples obtained with the CSD can be placed directly into a bath of ice, dry ice, or liquid nitrogen maintaining the composition of the biomass sample for relatively long periods of time.ConclusionsThe CSD has been demonstrated to successfully produce homogeneous stalk core samples in a repeatable manner with a throughput substantially superior to the currently available sampling methods. Given the variety of maize developmental stages and the diversity of stalk diameter evaluated, it is expected that the CSD will have utility for other bioenergy crops as well.


Frontiers in Plant Science | 2016

Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines.

Cynthia L. Cass; Anastasiya A. Lavell; Nicholas Santoro; Cliff E. Foster; Steven D. Karlen; Rebecca A. Smith; John Ralph; David F. Garvin; John C. Sedbrook

Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences and recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. The availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.


IUFRO Tree Biotechnology Conference 2011 : From genomes to integration and delivery | 2011

Science, society and biosafety of a field trial with transgenic biofuel poplars.

Rebecca Van Acker; Veronique Storme; Geert Goeminne; Bart Ivens; René Custers; Dirk Aerts; Wim Soetaert; John Ralph; Nicholas Santoro; Jean-Charles Leplé; Gilles Pilate; Wout Boerjan

Background Global warming, environmental disasters, and increasing oil prices have catalyzed a worldwide trend to use plant biomass as a renewable source for liquid biofuels and bio-based materials. Plant biomass can be processed into fermentable sugars by enzymatic depolymerization of the cell wall polysaccharides, followed by fermentation. However, the presence of lignin in the cell wall constitutes a major recalcitrance factor because it limits the accessibility of polysaccharidases to the cellulose microfibrils. To overcome this hurdle, plant biomass is pretreated in a costly and energyrequiring process. One approach to overcome the recalcitrance problem is to engineer lignin amount or alter its composition to make lignin more susceptible to chemical degradation [1]. Cinnamoyl-CoA reductase (CCR), the enzyme that converts feruloyl-CoA into coniferaldehyde, is considered the first enzyme in the monolignol-specific branch of the phenylpropanoid pathway. Poplar trees down-regulated in CCR have been produced in the early nineties and planted in a field trial in France to produce sufficient wood for small scale chemical pulping tests [2]. These trees had 20% lower lignin levels and relatively more cellulose per gram of wood [2]. Given that lignin is one of the main limiting factors limiting the conversion of plant biomass into fermentable sugars, and that poplar is considered as a promising second generation biofuel crop, we have re-grown these trees in the greenhouse and in the field, and evaluated wood produced from these trees by saccharification experiments. Methods Cinnamoyl-CoA reductase (CCR) expression was downregulated in poplar by sense and antisense strategies [2]. Transgenic trees were evaluated for lignin amount and composition [2] and for sugar release by saccharification assays [3]. After obtaining permission from the regulatory authorities, two transgenic lines were planted in a field trial in Belgium and two in a field trial in France, both under short rotation coppice culture to maximize biomass production. Wood was saccharified with and without acid pretreatment.


Bioenergy Research | 2010

A High-Throughput Platform for Screening Milligram Quantities of Plant Biomass for Lignocellulose Digestibility

Nicholas Santoro; Shane L. Cantu; Carl Erik Tornqvist; Tanya G. Falbel; Jenny L. Bolivar; Sara E. Patterson; Markus Pauly; Jonathan D. Walton

Collaboration


Dive into the Nicholas Santoro's collaboration.

Top Co-Authors

Avatar

John Ralph

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Cliff E. Foster

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia L. Cass

Illinois State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Karlen

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Gilles Pilate

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge