Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas T. Seyfried is active.

Publication


Featured researches published by Nicholas T. Seyfried.


Cell | 2009

Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation

Ping Xu; Duc M. Duong; Nicholas T. Seyfried; Dongmei Cheng; Yang Xie; Jessica Robert; John Rush; Mark Hochstrasser; Daniel Finley; Junmin Peng

All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unconventional linkages are abundant in vivo and that all non-K63 linkages may target proteins for degradation. Ubiquitin with K48 as the single lysine cannot support yeast viability, and different linkages have partially redundant functions. By profiling both the entire yeast proteome and ubiquitinated proteins in wild-type and ubiquitin K11R mutant strains using mass spectrometry, we identified K11 linkage-specific substrates, including Ubc6, a ubiquitin-conjugating enzyme involved in endoplasmic reticulum-associated degradation (ERAD). Ubc6 primarily synthesizes K11-linked chains, and K11 linkages function in the ERAD pathway. Thus, unconventional polyubiquitin chains are critical for ubiquitin-proteasome system function.


Journal of Biological Chemistry | 2011

Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease

Eric B. Dammer; Chan Hyun Na; Ping Xu; Nicholas T. Seyfried; Duc M. Duong; Dongmei Cheng; Marla Gearing; Howard D. Rees; James J. Lah; Allan I. Levey; John Rush; Junmin Peng

Polyubiquitin chains on substrates are assembled through any of seven lysine residues or the N terminus of ubiquitin (Ub), generating diverse linkages in the chain structure. PolyUb linkages regulate the fate of modified substrates, but their abundance and function in mammalian cells are not well studied. We present a mass spectrometry-based method to measure polyUb linkages directly from total lysate of mammalian cells. In HEK293 cells, the level of polyUb linkages was found to be 52% (Lys48), 38% (Lys63), 8% (Lys29), 2% (Lys11), and 0.5% or less for linear, Lys6, Lys27, and Lys33 linkages. Tissue specificity of these linkages was examined in mice fully labeled by heavy stable isotopes (i.e. SILAC mice). Moreover, we profiled the Ub linkages in brain tissues from patients of Alzheimer disease with or without concurrent Lewy body disease as well as three cellular models of proteolytic stress: proteasome deficiency, lysosome deficiency, and heat shock. The data support that polyUb chains linked through Lys6, Lys11, Lys27, Lys29, and Lys48 mediate proteasomal degradation, whereas Lys63 chains are preferentially involved in the lysosomal pathway. Mixed linkages, including Lys48, may also contribute to lysosomal targeting, as both Lys63 and Lys48 linkages are colocalized in LC3-labeled autophagosomes. Interestingly, heat shock treatment augments Lys11, Lys48, and Lys63 but not Lys29 linkages, and this unique pattern is similar to that in the profiled neurodegenerative cases. We conclude that different polyUb linkages play distinct roles under the three proteolytic stress conditions, and protein folding capacity in the heat shock responsive pathway might be more affected in Alzheimer disease.


Nature Medicine | 2014

Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease

Zhentao Zhang; Mingke Song; Xia Liu; Seong Su Kang; Il-Sun Kwon; Duc M. Duong; Nicholas T. Seyfried; William T. Hu; Zhixue Liu; Jian-Zhi Wang; Liming Cheng; Yi E. Sun; Shan Ping Yu; Allan I. Levey; Keqiang Ye

Neurofibrillary tangles (NFTs), composed of truncated and hyperphosphorylated tau, are a common feature of numerous aging-related neurodegenerative diseases, including Alzheimers disease (AD). However, the molecular mechanisms mediating tau truncation and aggregation during aging remain elusive. Here we show that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is activated during aging and proteolytically degrades tau, abolishes its microtubule assembly function, induces tau aggregation and triggers neurodegeneration. AEP is upregulated and active during aging and is activated in human AD brain and tau P301S–transgenic mice with synaptic pathology and behavioral impairments, leading to tau truncation in NFTs. Tau P301S–transgenic mice with deletion of the gene encoding AEP show substantially reduced tau hyperphosphorylation, less synapse loss and rescue of impaired hippocampal synaptic function and cognitive deficits. Mice infected with adeno-associated virus encoding an uncleavable tau mutant showed attenuated pathological and behavioral defects compared to mice injected with adeno-associated virus encoding tau P301S. Together, these observations indicate that AEP acts as a crucial mediator of tau-related clinical and neuropathological changes. Inhibition of AEP may be therapeutically useful for treating tau-mediated neurodegenerative diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2013

U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease

Bing Bai; Chadwick M. Hales; Ping Chung Chen; Yair M. Gozal; Eric B. Dammer; Jason J. Fritz; Xusheng Wang; Qiangwei Xia; Duc M. Duong; Craig Street; Gloria Cantero; Dongmei Cheng; Drew R. Jones; Zhiping Wu; Yuxin Li; Ian Diner; Craig J. Heilman; Howard D. Rees; Hao Wu; Li Lin; Keith E. Szulwach; Marla Gearing; Elliott J. Mufson; David A. Bennett; Thomas J. Montine; Nicholas T. Seyfried; Thomas S. Wingo; Yi E. Sun; Peng Jin; John J. Hanfelt

Deposition of insoluble protein aggregates is a hallmark of neurodegenerative diseases. The universal presence of β-amyloid and tau in Alzheimer’s disease (AD) has facilitated advancement of the amyloid cascade and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. However, the underlying etiology of the disease remains to be fully elucidated. Here we report a comprehensive study of the human brain-insoluble proteome in AD by mass spectrometry. We identify 4,216 proteins, among which 36 proteins accumulate in the disease, including U1-70K and other U1 small nuclear ribonucleoprotein (U1 snRNP) spliceosome components. Similar accumulations in mild cognitive impairment cases indicate that spliceosome changes occur in early stages of AD. Multiple U1 snRNP subunits form cytoplasmic tangle-like structures in AD but not in other examined neurodegenerative disorders, including Parkinson disease and frontotemporal lobar degeneration. Comparison of RNA from AD and control brains reveals dysregulated RNA processing with accumulation of unspliced RNA species in AD, including myc box-dependent-interacting protein 1, clusterin, and presenilin-1. U1-70K knockdown or antisense oligonucleotide inhibition of U1 snRNP increases the protein level of amyloid precursor protein. Thus, our results demonstrate unique U1 snRNP pathology and implicate abnormal RNA splicing in AD pathogenesis.


Molecular & Cellular Proteomics | 2011

A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development

Maribel Franco; Nicholas T. Seyfried; Andrea H. Brand; Junmin Peng; Ugo Mayor

Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.


Cancer Cell | 2015

Glutamate Dehydrogenase 1 Signals through Antioxidant Glutathione Peroxidase 1 to Regulate Redox Homeostasis and Tumor Growth

Lingtao Jin; Dan Li; Gina N. Alesi; Jun Fan; Hee Bum Kang; Zhou Lu; Titus J. Boggon; Peng Jin; Elizabeth R. Wright; Duc M. Duong; Nicholas T. Seyfried; Robert A. Egnatchik; Ralph J. DeBerardinis; Kelly R. Magliocca; Chuan He; Martha Arellano; J. Hanna J Khoury; Dong M. Shin; Fadlo R. Khuri; Sumin Kang

How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a reactive oxygen species scavenging enzyme glutathione peroxidase 1. Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth.


Analytical Chemistry | 2008

Systematic approach for validating the ubiquitinated proteome

Nicholas T. Seyfried; Ping Xu; Duc M. Duong; Dongmei Cheng; John J. Hanfelt; Junmin Peng

Protein ubiquitination plays an essential regulatory role within all eukaryotes. Large-scale analyses of ubiquitinated proteins are usually performed by combining affinity purification strategies with mass spectrometry. However, there is no reliable method to systematically differentiate ubiquitinated species from copurified unmodified components. Here we report a simple strategy for the large-scale validation of ubiquitination by reconstructing virtual Western blots for proteins analyzed by gel electrophoresis and mass spectrometry. Because protein ubiquitination, especially polyubiquitination, causes a dramatic shift of molecular weight, the difference between experimental and expected molecular weight was used to confirm the status of ubiquitination. Experimental molecular weight of putative yeast ubiquitin-conjugates was computed from the value and distribution of spectral counts in the gel using a Gaussian curve fitting approach. Unmodified proteins in yeast cell lysate were also analyzed as a control to assess the accuracy of the method. Multiple thresholds that incorporated the mass of ubiquitin and/or experimental variations were evaluated with respect to sensitivity and specificity. Ultimately, only approximately 30% of the candidate ubiquitin-conjugates were accepted based on the stringent filtering criteria, although they were purified under denaturing conditions. These accepted conjugates had an estimated false discovery rate of approximately 8% and primarily consisted of proteins larger than 100 kDa. Compared with another validation method (i.e., identification of ubiquitinated lysine sites), approximately 95% of the proteins with defined modification sites showed a convincing increase in molecular weight on the virtual Western blots. A second independent analysis indicated that the method can be simplified by excising fewer than ten gel bands. Therefore, this strategy establishes criteria necessary for the interpretation of ubiquitinated proteins.


The Journal of Neuroscience | 2013

Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer's disease mouse model.

Jeremy H. Herskowitz; Yangbo Feng; Alexa L. Mattheyses; Chadwick M. Hales; Lenora Higginbotham; Duc M. Duong; Thomas J. Montine; Juan C. Troncoso; Madhav Thambisetty; Nicholas T. Seyfried; Allan I. Levey; James J. Lah

Alzheimers disease (AD) is the leading cause of dementia and has no cure. Genetic, cell biological, and biochemical studies suggest that reducing amyloid-β (Aβ) production may serve as a rational therapeutic avenue to delay or prevent AD progression. Inhibition of RhoA, a Rho GTPase family member, is proposed to curb Aβ production. However, a barrier to this hypothesis has been the limited understanding of how the principal downstream effectors of RhoA, Rho-associated, coiled-coil containing protein kinase (ROCK) 1 and ROCK2, modulate Aβ generation. Here, we report that ROCK1 knockdown increased endogenous human Aβ production, whereas ROCK2 knockdown decreased Aβ levels. Inhibition of ROCK2 kinase activity, using an isoform-selective small molecule (SR3677), suppressed β-site APP cleaving enzyme 1 (BACE1) enzymatic action and diminished production of Aβ in AD mouse brain. Immunofluorescence and confocal microscopy analyses revealed that SR3677 alters BACE1 endocytic distribution and promotes amyloid precursor protein (APP) traffic to lysosomes. Moreover, SR3677 blocked ROCK2 phosphorylation of APP at threonine 654 (T654); in neurons, T654 was critical for APP processing to Aβ. These observations suggest that ROCK2 inhibition reduces Aβ levels through independent mechanisms. Finally, ROCK2 protein levels were increased in asymptomatic AD, mild cognitive impairment, and AD brains, demonstrating that ROCK2 levels change in the earliest stages of AD and remain elevated throughout disease progression. Collectively, these findings highlight ROCK2 as a mechanism-based therapeutic target to combat Aβ production in AD.


Nature Communications | 2015

Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease.

Zhentao Zhang; Mingke Song; Xia Liu; Seong Su Kang; Duc M. Duong; Nicholas T. Seyfried; Xuebing Cao; Liming Cheng; Yi E. Sun; Shan Ping Yu; Jianping Jia; Allan I. Levey; Keqiang Ye

The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimers disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD.


PLOS ONE | 2012

Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination.

Eric B. Dammer; Claudia Fallini; Yair M. Gozal; Duc M. Duong; Wilfried Rossoll; Ping Xu; James J. Lah; Allan I. Levey; Junmin Peng; Gary J. Bassell; Nicholas T. Seyfried

TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization.

Collaboration


Dive into the Nicholas T. Seyfried's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan C. Troncoso

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Madhav Thambisetty

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge