Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas V. Coleman is active.

Publication


Featured researches published by Nicholas V. Coleman.


Applied and Environmental Microbiology | 2002

Biodegradation of cis-Dichloroethene as the Sole Carbon Source by a β-Proteobacterium

Nicholas V. Coleman; Timothy E. Mattes; James M. Gossett; Jim C. Spain

ABSTRACT An aerobic bacterium capable of growth on cis-dichloroethene (cDCE) as a sole carbon and energy source was isolated by enrichment culture. The 16S ribosomal DNA sequence of the isolate (strain JS666) had 97.9% identity to the sequence from Polaromonas vacuolata, indicating that the isolate was a β-proteobacterium. At 20°C, strain JS666 grew on cDCE with a minimum doubling time of 73 ± 7 h and a growth yield of 6.1 g of protein/mol of cDCE. Chloride analysis indicated that complete dechlorination of cDCE occurred during growth. The half-velocity constant for cDCE transformation was 1.6 ± 0.2 μM, and the maximum specific substrate utilization rate ranged from 12.6 to 16.8 nmol/min/mg of protein. Resting cells grown on cDCE could transform cDCE, ethene, vinyl chloride, trans-dichloroethene, trichloroethene, and 1,2-dichloroethane. Epoxyethane was produced from ethene by cDCE-grown cells, suggesting that an epoxidation reaction is the first step in cDCE degradation.


Applied and Environmental Microbiology | 2002

Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

Nicholas V. Coleman; Timothy E. Mattes; James M. Gossett; Jim C. Spain

ABSTRACT Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC.


Fems Microbiology Reviews | 2010

Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution.

Timothy E. Mattes; Anne K. Alexander; Nicholas V. Coleman

Extensive use and inadequate disposal of chloroethenes have led to prevalent groundwater contamination worldwide. The occurrence of the lesser chlorinated ethenes [i.e. vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE)] in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (tetrachloroethene and trichloroethene). VC and cDCE are toxic and VC is a known human carcinogen. Therefore, their presence in groundwater is undesirable. In situ cleanup of VC- and cDCE-contaminated groundwater via oxidation by aerobic microorganisms is an attractive and potentially cost-effective alternative to physical and chemical approaches. Of particular interest are aerobic bacteria that use VC or cDCE as growth substrates (known as the VC- and cDCE-assimilating bacteria). Bacteria that grow on VC are readily isolated from contaminated and uncontaminated environments, suggesting that they are widespread and influential in aerobic natural attenuation of VC. In contrast, only one cDCE-assimilating strain has been isolated, suggesting that their environmental occurrence is rare. In this review, we will summarize the current knowledge of the physiology, biodegradation pathways, genetics, ecology, and evolution of VC- and cDCE-assimilating bacteria. Techniques (e.g. PCR, proteomics, and compound-specific isotope analysis) that aim to determine the presence, numbers, and activity of these bacteria in the environment will also be discussed.


Journal of Bacteriology | 2003

Epoxyalkane:Coenzyme M Transferase in the Ethene and Vinyl Chloride Biodegradation Pathways of Mycobacterium Strain JS60

Nicholas V. Coleman; Jim C. Spain

Mycobacterium strains that grow on ethene and vinyl chloride (VC) are widely distributed in the environment and are potentially useful for biocatalysis and bioremediation. The catabolic pathway of alkene assimilation in mycobacteria is not well characterized. It is clear that the initial step is a monooxygenase-mediated epoxidation that produces epoxyethane from ethene and chlorooxirane from VC, but the enzymes involved in subsequent transformation of the epoxides have not been identified. We investigated epoxyethane metabolism in Mycobacterium strain JS60 and discovered a coenzyme M (CoM)-dependent enzyme activity in extracts from VC- and ethene-grown cells. PCR amplifications using primers targeted at epoxyalkane:CoM transferase (EaCoMT) genes yielded part of the JS60 EaCoMT gene, which was used to clone an 8.4-kb genomic DNA fragment. The complete EaCoMT gene (etnE) was recovered, along with genes (etnABCD) encoding a four-component monooxygenase and two genes possibly involved in acyl-CoA ester metabolism. Reverse transcription-PCR indicated that the etnE and etnA genes were cotranscribed and inducible by ethene and VC. Heterologous expression of the etnE gene in Mycobacterium smegmatis mc(2)155 using the pMV261 vector gave a recombinant strain capable of transforming epoxyethane, epoxypropane, and chlorooxirane. A metabolite identified by mass spectrometry as 2-hydroxyethyl-CoM was produced from epoxyethane. The results indicate that the EaCoMT and monooxygenase enzymes encoded by a single operon (etnEABCD) catalyze the initial reactions in both the VC and ethene assimilation pathways. CoM-mediated reactions appear to be more widespread in bacteria than was previously believed.


Cancer Research | 2008

Characterization of Naturally Occurring HPV16 Integration Sites Isolated from Cervical Keratinocytes under Noncompetitive Conditions

Dall Kl; Cinzia Scarpini; Ian Roberts; David M Winder; Margaret Stanley; Balaji Muralidhar; Herdman Mt; Mark R. Pett; Nicholas V. Coleman

As the high-risk human papillomavirus (HPV) integrants seen in anogenital carcinomas represent the end-point of a clonal selection process, we used the W12 model to study the naturally occurring integration events that exist in HPV16-infected cervical keratinocytes before integrant selection. We performed limiting dilution cloning to identify integrants present in cells that also maintain episomes. Such integrants arise in a natural context and exist in a noncompetitive environment, as they are transcriptionally repressed by episome-derived E2. We found that integration can occur at any time during episome maintenance, providing biological support for epidemiologic observations that persistent HPV infection is a major risk factor in cervical carcinogenesis. Of 24 different integration sites isolated from a single nonclonal population of W12, 12 (50%) occurred within chromosome bands containing a common fragile site (CFS), similar to observations for selected integrants in vivo. This suggests that such regions represent relatively accessible sites for insertion of foreign DNA, rather than conferring a selective advantage when disrupted. Interestingly, however, integrants and CFSs did not accurately colocalize. We further observed that local DNA rearrangements occur frequently and rapidly after the integration event. The majority of integrants were in chromosome bands containing a cancer-associated coding gene or microRNA, indicating that integration occurs commonly in these regions, regardless of selective pressure. The cancer-associated genes were generally a considerable distance from the integration site, and there was no evidence for altered expression of nine strong candidate genes. These latter observations do not support an important role for HPV16 integration in causing insertional mutagenesis.


Applied and Environmental Microbiology | 2008

The Genome of Polaromonas sp. Strain JS666: Insights into the Evolution of a Hydrocarbon- and Xenobiotic-Degrading Bacterium, and Features of Relevance to Biotechnology

Timothy E. Mattes; Anne K. Alexander; Paul M. Richardson; A. Christine Munk; Cliff Han; Paul Stothard; Nicholas V. Coleman

ABSTRACT Polaromonas sp. strain JS666 can grow on cis-1,2-dichloroethene (cDCE) as a sole carbon and energy source and may be useful for bioremediation of chlorinated solvent-contaminated sites. Analysis of the genome sequence of JS666 (5.9 Mb) shows a bacterium well adapted to pollution that carries many genes likely to be involved in hydrocarbon and xenobiotic catabolism and metal resistance. Clusters of genes coding for haloalkane, haloalkanoate, n-alkane, alicyclic acid, cyclic alcohol, and aromatic catabolism were analyzed in detail, and growth on acetate, catechol, chloroacetate, cyclohexane carboxylate, cyclohexanol, ferulate, heptane, 3-hydroxybenzoate, hydroxyquinol, gentisate, octane, protocatechuate, and salicylate was confirmed experimentally. Strain JS666 also harbors diverse putative mobile genetic elements, including retrons, inteins, a miniature inverted-repeat transposable element, insertion sequence transposases from 14 families, eight genomic islands, a Mu family bacteriophage, and two large (338- and 360-kb) plasmids. Both plasmids are likely to be self-transferable and carry genes for alkane, alcohol, aromatic, and haloacid metabolism. Overall, the JS666 genome sequence provides insights into the evolution of pollutant-degrading bacteria and provides a toolbox of catabolic genes with utility for biotechnology.


Applied and Environmental Microbiology | 2003

Distribution of the Coenzyme M Pathway of Epoxide Metabolism among Ethene- and Vinyl Chloride-Degrading Mycobacterium Strains

Nicholas V. Coleman; Jim C. Spain

ABSTRACT An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.


Cancer Research | 2010

In vitro Progression of Human Papillomavirus 16 Episome-Associated Cervical Neoplasia Displays Fundamental Similarities to Integrant-Associated Carcinogenesis

Elizabeth Gray; Mark R. Pett; Dawn Ward; David M Winder; Margaret Stanley; Ian Roberts; Cinzia Scarpini; Nicholas V. Coleman

An important event in the development of cervical squamous cell carcinoma (SCC) is deregulated expression of high-risk human papillomavirus (HR-HPV) oncogenes, most commonly related to viral integration into host DNA. Mechanisms of development of the approximately 15% of SCCs that contain extrachromosomal (episomal) HR-HPV are poorly understood due to limited longitudinal data. We therefore used the W12 model to study mechanisms of cervical carcinogenesis associated with episomal HPV16. In vitro progression of W12 normally occurs through selection of cells containing integrated HPV16. However, in one long-term culture, keratinocytes developed a selective growth advantage and invasive phenotype while retaining HPV16 episomes at increased copy number in the absence of transcriptionally active integrants. Longitudinal investigations revealed similarities between the episome- and integrant-associated routes of neoplastic progression. Most notable were dynamic changes in viral early gene expression in episome-retaining cells, consistent with continually changing selective pressures. An early increase in viral transcription preceded elevated episome copy number and was followed by a reduction to near baseline after the development of invasiveness. Episomal transcriptional deregulation did not require selection of a specific sequence variant of the HPV16 upstream regulatory region, although increased levels of acetylated histone H4 around the late promoter implicated a role for altered chromatin structure. Interestingly, invasive episome-retaining cells showed high levels of HPV16 E2/E6 proteins (despite decreased transcript levels) and reduced expression of IFN-stimulated genes, adaptations that support viral persistence and cell survival. Our findings suggest a unified working model for events important in cervical neoplastic progression regardless of HR-HPV physical state.


Journal of Virology | 2012

Reconstruction of Human Papillomavirus Type 16-Mediated Early-Stage Neoplasia Implicates E6/E7 Deregulation and the Loss of Contact Inhibition in Neoplastic Progression

Erin Isaacson Wechsler; Qian Wang; Ian Roberts; Emilio Pagliarulo; Deborah J. Jackson; Christina Untersperger; Nicholas V. Coleman; Heather Griffin; John Doorbar

ABSTRACT Infection with human papillomavirus type 16 (HPV-16) can lead to low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). Here we show that these in vivo disease states can be replicated in raft cultures of early-pass HPV-16 episomal cell lines, at both the level of pathology and the level of viral gene expression. A reduced responsiveness to cell-cell contact inhibition and an increase in E6/E7 activity correlated closely with phenotype. Similar deregulation is likely to underlie the appearance of LSIL or HSIL soon after infection.


Journal of Applied Microbiology | 2002

Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450

Nicholas V. Coleman; Jim C. Spain; Trevor Duxbury

Aims: To investigate the biodegradation of the explosive compound RDX in Rhodococcus strain DN22, a bacterium previously isolated for its ability to grow on RDX as sole nitrogen source. 
Methods and Results: Analysis of the rates of RDX degradation and nitrite production indicated that 2 mol nitrite were produced per mole RDX degraded. Cells of strain DN22 had the highest activity against RDX during the exponential phase and low activity in the stationary phase. Nitrite production from RDX was inhibited by metyrapone, menadione, piperonyl butoxide, n‐octylamine and carbon monoxide and inducible by pyrrolidine, pyridine and atrazine. Acridine orange treatment yielded RDX‐minus derivatives of strain DN22 at a curing rate of 1·5% and all of the cured derivatives had lost a large plasmid. 
Conclusions: RDX biodegradation in strain DN22 appears to involve a plasmid‐encoded cytochrome p‐450 enzyme. 
Significance and Impact of the Study: Plasmid‐borne RDX degradation genes could potentially be transferred between bacteria. Our research into RDX metabolism in strain DN22 will facilitate future applications of this bacterium for bioremediation.

Collaboration


Dive into the Nicholas V. Coleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim C. Spain

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Roberts

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge