Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas W. Simon is active.

Publication


Featured researches published by Nicholas W. Simon.


Behavioral Neuroscience | 2007

Cocaine exposure causes long-term increases in impulsive choice.

Nicholas W. Simon; Ian A. Mendez; Barry Setlow

In this study, the authors examined the long-term effects of prior exposure to cocaine on a delay-discounting task commonly used to measure impulsive choice. Male Long-Evans rats received daily intraperitoneal injections of 30 mg/kg cocaine HCl or saline for 14 days. Following 3 weeks of withdrawal, rats began training. On each trial, rats were given a choice between 2 levers. A press on 1 lever resulted in immediate delivery of a single 45-mg food pellet, and a press on the other resulted in delivery of 4 pellets after a delay period. Impulsive choice was defined as preference for the small immediate over the large delayed reward. Three months after treatment, cocaine-exposed rats displayed increased impulsive choice behavior. They also showed less anticipatory responding (entries into the food trough) during the delays prior to reward delivery, indicating that the enhanced impulsive choice in these rats may be related to deficits in bridging the delay between response and reward. These data demonstrate that cocaine exposure can cause enduring increases in impulsive choice behavior, consistent with observations in human subjects with drug addictions.


Neuropsychopharmacology | 2009

Balancing Risk and Reward: A Rat Model of Risky Decision Making

Nicholas W. Simon; Ryan J. Gilbert; Jeffrey D. Mayse; Jennifer L. Bizon; Barry Setlow

We developed a behavioral task in rats to assess the influence of risk of punishment on decision making. Male Long–Evans rats were given choices between pressing a lever to obtain a small, ‘safe’ food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, ‘risky’ reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (ie, it made rats more risk averse). Cocaine did not cause a shift in reward choice, but instead impaired the rats’ sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction.


The Journal of Neuroscience | 2011

Dopaminergic Modulation of Risky Decision-Making

Nicholas W. Simon; Karienn S. Montgomery; Blanca S. Beas; Marci R. Mitchell; Candi L. LaSarge; Ian A. Mendez; Cristina Bañuelos; Colin M. Vokes; Aaron B. Taylor; Rebecca P. Haberman; Jennifer L. Bizon; Barry Setlow

Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal cortical-striatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences.


Behavioural Pharmacology | 2009

Effects of chronic administration of drugs of abuse on impulsive choice (delay discounting) in animal models.

Barry Setlow; Ian A. Mendez; Marci R. Mitchell; Nicholas W. Simon

Drug-addicted individuals show high levels of impulsive choice, characterized by preference for small immediate over larger but delayed rewards. Although the causal relationship between chronic drug use and elevated impulsive choice in humans has been unclear, a small but growing body of literature over the past decade has shown that chronic drug administration in animal models can cause increases in impulsive choice, suggesting that a similar causal relationship may exist in human drug users. This article reviews this literature, with a particular focus on the effects of chronic cocaine administration, which have been most thoroughly characterized. The potential mechanisms of these effects are described in terms of drug-induced neural alterations in ventral striatal and prefrontal cortical brain systems. Some implications of this research for pharmacological treatment of drug-induced increases in impulsive choice are discussed, along with suggestions for future research in this area.


European Journal of Neuroscience | 2013

Prefrontal cortical–striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity

Nicholas W. Simon; Blanca S. Beas; Karienn S. Montgomery; Rebecca P. Haberman; Jennifer L. Bizon; Barry Setlow

Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort‐based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort‐based decision‐making.


Neurobiology of Learning and Memory | 2008

Long-term effects of prior cocaine exposure on Morris water maze performance

Ian A. Mendez; Karienn S. Montgomery; Candi L. LaSarge; Nicholas W. Simon; Jennifer L. Bizon; Barry Setlow

Cocaine addiction is associated with long-term cognitive alterations including deficits on tests of declarative/spatial learning and memory. To determine the extent to which cocaine exposure plays a causative role in these deficits, adult male Long-Evans rats were given daily injections of cocaine (30 mg/kg/day x 14 days) or saline vehicle. Three months later, rats were trained for 6 sessions on a Morris water maze protocol adapted from Gallagher, Burwell, and Burchinal [Gallagher, M., Burwell, R., & Burchinal, M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behavioral Neuroscience, 107, 618-626]. Rats given prior cocaine exposure performed similarly to controls on training trials, but searched farther from the platform location on probe trials interpolated throughout the training sessions and showed increased thigmotaxis. The results demonstrate that a regimen of cocaine exposure can impair Morris water maze performance as long as 3 months after exposure. Although the impairments were not consistent with major deficits in spatial learning and memory, they may have resulted from cocaine-induced increases in stress responsiveness and/or anxiety. Increased stress and anxiety would be expected to increase thigmotaxis as well as cause impairments in searching for the platform location, possibly through actions on ventral striatal dopamine signaling.


Neurobiology of Learning and Memory | 2006

Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning: Implications for drug addiction.

Nicholas W. Simon; Barry Setlow

It has been suggested that some of the addictive potential of psychostimulant drugs of abuse such as amphetamine may result from their ability to enhance memory for drug-related experiences through actions on memory consolidation. This experiment examined whether amphetamine can specifically enhance consolidation of memory for a Pavlovian association between a neutral conditioned stimulus (CS-a light) and a rewarding unconditioned stimulus (US-food), as Pavlovian conditioning of this sort plays a major role in drug addiction. Male Long-Evans rats were given six training sessions consisting of 8 CS presentations followed by delivery of the food into a recessed food cup. After the 1st, 3rd, and 5th session, rats received subcutaneous injections of amphetamine (1.0 or 2.0 mg/kg) or saline vehicle immediately following training. Conditioned responding was assessed using the percentage of time rats spent in the food cup during the CS relative to a pre-CS baseline period. Both amphetamine-treated groups showed significantly more selective conditioned responding than saline controls. In a control experiment, there were no differences among groups given saline, 1.0 or 2.0 mg/kg amphetamine 2 h post-training, suggesting that immediate post-training amphetamine enhanced performance specifically through actions on memory consolidation rather than through non-mnemonic processes. This procedure modeled Pavlovian learning involved in drug addiction, in which the emotional valence of a drug reward is transferred to neutral drug-predictive stimuli such as drug paraphernalia. These data suggest that amphetamine may contribute to its addictive potential through actions specifically on memory consolidation.


Developmental Cognitive Neuroscience | 2015

Neural processing of reward in adolescent rodents.

Nicholas W. Simon; Bita Moghaddam

Highlights • The adolescent brain processes rewards differently than in adults.• These differences occur even when behavior is similar between age groups.• DS was the locus of substantial developmental differences in reward activity.• Surprisingly, differences were not as pronounced in VS.• These differences may have implications for adolescent psychiatric vulnerability.


Behavioral Neuroscience | 2013

Differences in Response Initiation and Behavioral Flexibility Between Adolescent and Adult Rats

Nicholas W. Simon; Timothy A. Gregory; Jesse Wood; Bita Moghaddam

Adolescence is a period of increased vulnerability to psychiatric illnesses such as addiction, mood disorders, and schizophrenia. Rats provide a useful animal model for investigating the differences in behavior and biology between adults and adolescents that stem from ongoing brain development. We developed the Cued Response Inhibition Task, or CRIT, to assess response inhibition and initiation processes by measuring the ability of rodents to withhold a response during an inhibitory cue and then to respond promptly after cue termination. We found no difference between adult and adolescent rats in the ability to appropriately inhibit a response during cue presentation. Adolescents, however, were unable to initiate a response as quickly as adults after cue termination. Further, we observed that this difference in responding was abolished after adolescent rats aged to adulthood with no additional training. In a separate experiment, adult and adolescent rats were trained in CRIT and then trained in another protocol in which the response inhibitory cue from CRIT was used as a Pavlovian cue predictive of reward. Adolescents demonstrated more reward-seeking behavior during the previously inhibitory Pavlovian cue than adults, indicative of greater behavioral flexibility. Taken together, these data suggest that, compared with adults, adolescent rats (a) are less able to initiate a response after response inhibition, (b) equally inhibit behavioral responses, and (c) are more adept at flexibly switching behavioral patterns. Furthermore, this study characterizes a task that is well suited for future pharmacological and electrophysiological investigations for assessing neuronal processing differences between adolescents and adults.


Frontiers in Neuroscience | 2012

Risk, Reward, and Decision-Making in a Rodent Model of Cognitive Aging

Ryan J. Gilbert; Marci R. Mitchell; Nicholas W. Simon; Cristina Bañuelos; Barry Setlow; Jennifer L. Bizon

Impaired decision-making in aging can directly impact factors (financial security, health care) that are critical to maintaining quality of life and independence at advanced ages. Naturalistic rodent models mimic human aging in other cognitive domains, and afford the opportunity to parse the effects of age on discrete aspects of decision-making in a manner relatively uncontaminated by experiential factors. Young adult (5–7 months) and aged (23–25 months) male F344 rats were trained on a probability discounting task in which they made discrete-trial choices between a small certain reward (one food pellet) and a large but uncertain reward (two food pellets with varying probabilities of delivery ranging from 100 to 0%). Young rats chose the large reward when it was associated with a high probability of delivery and shifted to the small but certain reward as probability of the large reward decreased. As a group, aged rats performed comparably to young, but there was significantly greater variance among aged rats. One subgroup of aged rats showed strong preference for the small certain reward. This preference was maintained under conditions in which large reward delivery was also certain, suggesting decreased sensitivity to reward magnitude. In contrast, another subgroup of aged rats showed strong preference for the large reward at low probabilities of delivery. Interestingly, this subgroup also showed elevated preference for probabilistic rewards when reward magnitudes were equalized. Previous findings using this same aged study population described strongly attenuated discounting of delayed rewards with age, together suggesting that a subgroup of aged rats may have deficits associated with accounting for reward costs (i.e., delay or probability). These deficits in cost-accounting were dissociable from the age-related differences in sensitivity to reward magnitude, suggesting that aging influences multiple, distinct mechanisms that can impact cost–benefit decision-making.

Collaboration


Dive into the Nicholas W. Simon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bita Moghaddam

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse Wood

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge