Nichole A. Mesnard
Loyola University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nichole A. Mesnard.
Brain Behavior and Immunity | 2011
Junping Xin; Derek A. Wainwright; Nichole A. Mesnard; Craig J. Serpe; Virginia M. Sanders; Kathryn J. Jones
We have previously shown that immunodeficient mice exhibit significant facial motoneuron (FMN) loss compared to wild-type (WT) mice after a facial nerve axotomy. Interleukin-10 (IL-10) is known as a regulatory cytokine that plays an important role in maintaining the anti-inflammatory environment within the central nervous system (CNS). IL-10 is produced by a number of different cells, including Th2 cells, and may exert an anti-apoptotic action on neurons directly. In the present study, the role of IL-10 in mediating neuroprotection following facial nerve axotomy in Rag-2- and IL-10-deficient mice was investigated. Results indicate that IL-10 is neuroprotective, but CD4+ T cells are not the requisite source of IL-10. In addition, using real-time PCR analysis of laser microdissected brainstem sections, results show that IL-10 mRNA is constitutively expressed in the facial nucleus and that a transient, significant reduction of IL-10 mRNA occurs following axotomy under immunodeficient conditions. Dual labeling immunofluorescence data show, unexpectedly, that the IL-10 receptor (IL-10R) is constitutively expressed by facial motoneurons, but is selectively induced in astrocytes within the facial nucleus after axotomy. Thus, a non-CD4+ T cell source of IL-10 is necessary for modulating both glial and neuronal events that mediate neuroprotection of injured motoneurons, but only with the cooperation of CD4+ T cells, providing an avenue of novel investigation into therapeutic approaches to prevent or reverse motoneuron diseases, such as amyotrophic lateral sclerosis (ALS).
Asn Neuro | 2009
Derek A. Wainwright; Junping Xin; Nichole A. Mesnard; Taylor Beahrs; Christine M Politis; Virginia M. Sanders; Kathryn J. Jones
We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.
Brain Behavior and Immunity | 2012
Junping Xin; Nichole A. Mesnard; Taylor Beahrs; Derek A. Wainwright; Craig J. Serpe; Thomas D. Alexander; Virginia M. Sanders; Kathryn J. Jones
BACKGROUND The production of neurotrophic factors, such as BDNF, has generally been considered an important mechanism of immune-mediated neuroprotection. However, the ability of T cells to produce BDNF remains controversial. METHODS In the present study, we examined mRNA and protein of BDNF using RT-PCR and western blot, respectively, in purified and reactivated CD4(+) T cells. In addition, to determine the role of BDNF derived from CD4(+) T cells, the BDNF gene was specifically deleted in T cells using the Cre-lox mouse model system. RESULTS Our results indicate that while both mRNA expression and protein secretion of BDNF in reactivated T cells were detected at 24 h, only protein could be detected at 72 h after reactivation. The results suggest a transient up-regulation of BDNF mRNA in reactivated T cells. Furthermore, in contrast to our hypothesis that the BDNF expression is necessary for CD4(+) T cells to mediate neuroprotection, mice with CD4(+) T cells lacking BDNF expression demonstrated a similar level of facial motoneuron survival compared to their littermates that expressed BDNF, and both levels were comparable to wild-type. The results suggest that the deletion of BDNF did not impair CD4(+) T cell-mediated neuroprotection. CONCLUSION Collectively, while CD4(+) T cells are a potential source of BDNF after nerve injury, production of BDNF is not necessary for CD4(+) T cells to mediate their neuroprotective effects.
The Journal of Comparative Neurology | 2011
Nichole A. Mesnard; Virginia M. Sanders; Kathryn J. Jones
Previously, we compared molecular profiles of one population of wild‐type (WT) mouse facial motoneurons (FMNs) surviving with FMNs undergoing significant cell death after axotomy. Regardless of their ultimate fate, injured FMNs respond with a vigorous pro‐survival/regenerative molecular response. In contrast, the neuropil surrounding the two different injured FMN populations contained distinct molecular differences that support a causative role for glial and/or immune‐derived molecules in directing contrasting responses of the same cell types to the same injury. In the current investigation, we utilized the facial nerve axotomy model and a presymptomatic amyotrophic lateral sclerosis (ALS) mouse (SOD1) model to experimentally mimic the axonal die‐back process observed in ALS pathogenesis without the confounding variable of disease onset. Presymptomatic SOD1 mice had a significant decrease in FMN survival compared with WT, which suggests an increased susceptibility to axotomy. Laser microdissection was used to accurately collect uninjured and axotomized facial motor nuclei of WT and presymptomatic SOD1 mice for mRNA expression pattern analyses of pro‐survival/pro‐regeneration genes, neuropil‐specific genes, and genes involved in or responsive to the interaction of FMNs and non‐neuronal cells. Axotomized presymptomatic SOD1 FMNs displayed a dynamic pro‐survival/regenerative response to axotomy, similar to WT, despite increased cell death. However, significant differences were revealed when the axotomy‐induced gene expression response of presymptomatic SOD1 neuropil was compared with WT. We propose that the increased susceptibility of presymptomatic SOD1 FMNs to axotomy‐induced cell death and, by extrapolation, disease progression, is not intrinsic to the motoneuron, but rather involves a dysregulated response by non‐neuronal cells in the surrounding neuropil. J. Comp. Neurol. 519:3488–3506, 2011.
Journal of Neuroimmunology | 2009
Derek A. Wainwright; Junping Xin; Nichole A. Mesnard; Christine M Politis; Virginia M. Sanders; Kathryn J. Jones
We have previously demonstrated a neuroprotective mechanism of facial motoneuron (FMN) survival after facial nerve axotomy that is dependent on CD4(+) Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS resident microglia. To investigate this mechanism, we chose to study the Th2-associated chemokine, CCL11, and Th1-associated chemokine, CXCL11, in wild-type and presymptomatic mSOD1 mice after facial nerve axotomy. In this report, the results indicate that CCL11 is constitutively expressed in the uninjured facial motor nucleus, but CXCL11 is not expressed at all. Facial nerve axotomy induced a shift in CCL11 expression from FMN to astrocytes, whereas CXCL11 was induced in FMN. Differences in the number of CCL11- and CXCL11-expressing cells were observed between WT and mSOD1 mice after facial nerve axotomy.
Neuroscience Letters | 2010
Derek A. Wainwright; Junping Xin; Nichole A. Mesnard; Virginia M. Sanders; Kathryn J. Jones
We have previously demonstrated that CD4(+) Th2 lymphocytes are required to rescue facial motoneuron (FMN) survival after facial nerve axotomy through interaction with peripheral antigen presenting cells, as well as CNS resident microglia. Furthermore, the innate immune molecule, toll-like receptor 2 (TLR2), has been implicated in the development of Th2-type immune responses and can be activated by intracellular components released by dead or dying cells. The role of TLR2 in the FMN response to axotomy was explored in this study, using a model of facial nerve axotomy at the stylomastoid foramen in the mouse, in which blood-brain-barrier (BBB) permeability does not occur. After facial nerve axotomy, TLR2 mRNA was significantly upregulated in the facial motor nucleus and co-immunofluorescence localized TLR2 to CD68(+) microglia, but not GFAP(+) astrocytes. Using TLR2-deficient (TLR2(-/-)) mice, it was determined that TLR2 does not affect FMN survival levels after axotomy. These data contribute to understanding the role of innate immunity after FMN death and may be relevant to motoneuron diseases, such as amyotrophic lateral sclerosis (ALS).
The Journal of Comparative Neurology | 2014
Melissa M. Haulcomb; Nichole A. Mesnard; Richard J. Batka; Thomas D. Alexander; Virginia M. Sanders; Kathryn J. Jones
The target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests that disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Presymptomatic mSOD1G93A mouse facial MN (FMN) are more susceptible to axotomy‐induced cell death than wild‐type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on presymptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy‐induced FMN death in WT and is partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support the injured MN, leading to Fas‐induced FMN death. Finally, we demonstrate that, during disease progression, the mSOD1 facial nucleus displays target disconnection‐induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS. J. Comp. Neurol. 522:2349–2376, 2014.
The Journal of Comparative Neurology | 2014
Melissa M. Haulcomb; Nichole A. Mesnard; Richard J. Batka; Thomas D. Alexander; Virginia M. Sanders; Kathryn J. Jones
The target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests that disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Presymptomatic mSOD1G93A mouse facial MN (FMN) are more susceptible to axotomy‐induced cell death than wild‐type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on presymptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy‐induced FMN death in WT and is partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support the injured MN, leading to Fas‐induced FMN death. Finally, we demonstrate that, during disease progression, the mSOD1 facial nucleus displays target disconnection‐induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS. J. Comp. Neurol. 522:2349–2376, 2014.
Experimental Neurology | 2010
Nichole A. Mesnard; Thomas D. Alexander; Virginia M. Sanders; Kathryn J. Jones
Journal of neurodegeneration & regeneration | 2013
Nichole A. Mesnard; Melissa M. Haulcomb; Lisa Tanzer; Virginia M. Sanders; Kathryn J. Jones