Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nichole M. Neugebauer is active.

Publication


Featured researches published by Nichole M. Neugebauer.


Brain Research | 2010

Effects of galanin on monoaminergic systems and HPA axis: Potential mechanisms underlying the effects of galanin on addiction- and stress-related behaviors

Marina R. Picciotto; Christian Brabant; Emily B. Einstein; Helen M. Kamens; Nichole M. Neugebauer

Like a number of neuropeptides, galanin can alter neural activity in brain areas that are important for both stress-related behaviors and responses to drugs of abuse. Accordingly, drugs that target galanin receptors can alter behavioral responses to drugs of abuse and can modulate stress-related behaviors. Stress and drug-related behaviors are interrelated: stress can promote drug-seeking, and drug exposure and withdrawal can increase activity in brain circuits involved in the stress response. We review here what is known about the ability of galanin and galanin receptors to alter neuronal activity, and we discuss potential mechanisms that may underlie the effects of galanin on behaviors involved in responses to stress and addictive drugs. Understanding the mechanisms underlying galanins effects on neuronal function in brain regions related to stress and addiction may be useful in developing novel therapeutics for the treatment of stress- and addiction-related disorders.


Neuropsychopharmacology | 2008

METHYLPHENIDATE ENHANCES THE ABUSE-RELATED BEHAVIORAL EFFECTS OF NICOTINE IN RATS: INTRAVENOUS SELF-ADMINISTRATION, DRUG DISCRIMINATION AND LOCOMOTOR CROSS-SENSITIZATION

Thomas E. Wooters; Nichole M. Neugebauer; Craig R. Rush; Michael T. Bardo

Stimulant drugs, including D-amphetamine, cocaine, and methylphenidate, increase cigarette smoking in controlled human laboratory experiments. Although the mechanism(s) underlying this effect are unknown, it is possible that stimulants may enhance directly the abuse-related effects of nicotine. In the present study, we characterized the behavioral pharmacological interactions between methylphenidate and nicotine in the intravenous self-administration, drug discrimination, and locomotor cross-sensitization procedures. Adult male Sprague–Dawley rats were trained to respond for intravenous nicotine (0.01 or 0.03 mg/kg/infusion) or sucrose, and the acute effects of methylphenidate (1.25–10 mg/kg) were determined; in addition, separate groups of rats were treated with methylphenidate (2.5 mg/kg) or saline before 12 consecutive nicotine (0.03 mg/kg/infusion) self-administration sessions. Next, the discriminative stimulus effects of nicotine (0.03–0.3 mg/kg) and methylphenidate (1.25–10 mg/kg), alone and in combination with a low nicotine dose (0.056 mg/kg), were tested in nicotine-trained rats. Finally, the locomotor effect of repeated methylphenidate (2.5 mg/kg) was tested in rats previously treated with nicotine (0.2–0.8 mg/kg). Results indicated that acute methylphenidate increased the rate of nicotine self-administration at doses that reduced sucrose-maintained responding; furthermore, tolerance to this effect was not apparent following repeated methylphenidate. Methylphenidate, while not substituting for nicotine alone, dose-dependently enhanced the discriminative stimulus effect of a low nicotine dose. In addition, repeated nicotine exposure promoted the development of locomotor sensitization to methylphenidate. Taken together with recent clinical findings, these results suggest that methylphenidate may enhance the abuse-related behavioral effects of nicotine, perhaps increasing vulnerability to tobacco dependence.


Pharmacology, Biochemistry and Behavior | 2013

Morphine dependence and withdrawal induced changes in cholinergic signaling

Nichole M. Neugebauer; Emily B. Einstein; Maria B. Lopez; Tristan D. McClure-Begley; Yann S. Mineur; Marina R. Picciotto

Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [³H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior.


Neuropharmacology | 2011

Tetrabenazine inhibition of monoamine uptake and methamphetamine behavioral effects: locomotor activity, drug discrimination and self-administration.

Andrew C. Meyer; David B. Horton; Nichole M. Neugebauer; Thomas E. Wooters; Justin R. Nickell; Linda P. Dwoskin; Michael T. Bardo

Tetrabenazine (TBZ), a benzoquinolizine derivative, binds with high affinity to the vesicular monoamine transporter-2 (VMAT2), inhibiting uptake of cytosolic monoamines. The current study aimed to provide preclinical evidence supporting the potential use of TBZ as a treatment for methamphetamine abuse. Effects of TBZ on function of the dopamine transporter (DAT) and serotonin transporter (SERT) in striatal and hippocampal synaptosomes, respectively, and on VMAT2 function in isolated striatal synaptic vesicles were determined. Effect of TBZ (acute, 0.1-3.0 mg/kg, s.c.; repeated, 1.0 mg/kg for 7 days) on locomotor activity in methamphetamine-sensitized rats was assessed. Ability of TBZ (0.1-3.0 mg/kg; s.c.) or vehicle to decrease the discriminative effect of methamphetamine also was determined. Ability of TBZ (acute, 0.1-1.0 mg/kg, s.c.; repeated, 0.1 or 1.0 mg/kg for 7 days) to specifically decrease methamphetamine self-administration was determined; for comparison, a separate group of rats was assessed for effects of TBZ on food-maintained responding. Results show that TBZ was 11-fold more potent inhibiting DAT than SERT, and 2.5-fold more potent inhibiting VMAT2 than DAT. Results from behavioral studies showed that the lowest dose of TBZ transiently increased methamphetamine self-administration, whereas higher TBZ doses decreased methamphetamine self-administration. Also, TBZ at high doses decreased methamphetamine locomotor sensitization and discriminative stimulus effects, as well as food-maintained responding. Thus, despite acting as a potent VMAT2 inhibitor, these preclinical results indicate that TBZ lacks behavioral specificity as an inhibitor of methamphetamine-induced reinforcement, diminishing its viability as a suitable treatment for methamphetamine abuse.


Drug and Alcohol Dependence | 2010

Nicotine elicits methamphetamine-seeking in rats previously administered nicotine

Nichole M. Neugebauer; Steven B. Harrod; Michael T. Bardo

Research has indicated a high correlation between psychostimulant use and tobacco cigarette smoking in human substance abusers. The objective of the current study was to examine the effects of acute and repeated nicotine administration on responding for intravenous methamphetamine (0.03 mg/kg/infusion) in a rodent model of self-administration, as well as the potential of nicotine to induce reinstatement of previously extinguished drug-taking behavior in male Sprague-Dawley rats. In addition, it was assessed whether nicotine-induced reinstatement of methamphetamine-seeking behavior and nicotine-induced locomotor sensitization require that nicotine be temporally paired with the methamphetamine self-administration session or the locomotor activity chamber. Nicotine acutely decreased methamphetamine self-administration, but did not persistently alter responding during the maintenance of methamphetamine self-administration. However, following extinction of methamphetamine self-administration, nicotine administration reinstated methamphetamine-seeking behavior only in rats that had previously been administered nicotine. Nicotine-induced reinstatement and expression of locomotor sensitization were not dependent on a temporal pairing of nicotine with either the methamphetamine self-administration session or the locomotor activity chamber, respectively. These results indicate that nicotine may be acting, at least in part, through a non-associative mechanism to reinstate methamphetamine-seeking behavior.


Pharmacology, Biochemistry and Behavior | 2011

Mice lacking the galanin gene show decreased sensitivity to nicotine conditioned place preference.

Nichole M. Neugebauer; Robert M. Henehan; Claire A. Hales; Marina R. Picciotto

Previous work has indicated that the neuropeptide galanin decreases sensitivity to the rewarding effects of morphine and cocaine, but increases alcohol drinking. The aim of the current study was to examine the role of galanin signaling in nicotine reward by testing the effects of nicotine in mice lacking galanin peptide (GAL-/-) as compared to wild-type (GAL+/+) controls. Using an unbiased, three-chamber conditioned place preference (CPP) paradigm the dose-response function for nicotine CPP was tested in GAL-/- and GAL+/+ mice. Since activation of extracellular signal-related kinase (ERK2) is involved in the rewarding effects of several classes of drugs of abuse, we then measured the level of ERK2 phosphorylation in the nucleus accumbens shell (NACsh) and core (NACco) of GAL-/- and GAL+/+ mice following re-exposure to the CPP chamber previously paired with nicotine as a marker of mesolimbic system activation. Finally, we examined whether acute nicotine administration affects ERK2 activity in GAL-/- and GAL+/+ mice. GAL-/- mice required a higher dose of nicotine to induce a significant CPP compared to GAL+/+ mice. In the conditioning groups showing significant expression of nicotine CPP, only GAL+/+ mice showed ERK2 activation in the NACsh. This suggests that the nicotine CPP observed in GAL+/+ mice resulted in differential recruitment of ERK signaling in the NACsh compared to GAL-/- mice. In addition, no activation of ERK2 was observed following acute nicotine administration in either genotype. These data, along with prior results, suggest that galanin alters sensitivity to drugs of abuse differentially, with morphine, cocaine and amphetamine place preference suppressed, and nicotine and alcohol preference increased, by galanin signaling.


Neuropsychopharmacology | 2013

The Synaptic Adhesion Molecule SynCAM 1 Contributes to Cocaine Effects on Synapse Structure and Psychostimulant Behavior

Joanna Giza; Yonwoo Jung; Rachel Jeffrey; Nichole M. Neugebauer; Marina R. Picciotto; Thomas Biederer

Drugs of abuse have acute and persistent effects on synapse structure and addiction-related behaviors. Trans-synaptic interactions can control synapse development, and synaptic cell adhesion molecule (SynCAM) proteins (also named nectin-like molecules) are immunoglobulin adhesion proteins that span the synaptic cleft and induce excitatory synapses. Our studies now reveal that the loss of SynCAM 1 in knockout (KO) mice reduces excitatory synapse number in nucleus accumbens (NAc). SynCAM 1 additionally contributes to the structural remodeling of NAc synapses in response to the psychostimulant cocaine. Specifically, we find that cocaine administration increases the density of stubby spines on medium spiny neurons in NAc, and that maintaining this increase requires SynCAM 1. Furthermore, mushroom-type spines on these neurons are structurally more plastic when SynCAM 1 is absent, and challenging drug-withdrawn mice with cocaine shortens these spines in SynCAM 1 KO mice. These effects are correlated with changes on the behavioral level, where SynCAM 1 contributes to the psychostimulant effects of cocaine as measured after acute and repeated administration, and in drug-withdrawn mice. Together, our results provide evidence that the loss of a synapse-organizing adhesion molecule can modulate cocaine effects on spine structures in NAc and increases vulnerability to the behavioral actions of cocaine. SynCAM-dependent pathways may therefore represent novel points of therapeutic intervention after exposure to drugs of abuse.


Behavioural Pharmacology | 2010

Nicotine and cocaine self-administration using a multiple schedule of intravenous drug and sucrose reinforcement in rats.

Dustin J. Stairs; Nichole M. Neugebauer; Michael T. Bardo

There appears to be a relatively narrow range of contingencies in which intravenous (i.v) infusions of nicotine will maintain responding in rats. The schedule of reinforcement typically used when investigating i.v. nicotine self-administration is a simple fixed-ratio (FR) schedule. This study determined if responding in rats could be established using a multiple schedule of either i.v. cocaine or nicotine and sucrose reinforcement. Following training of individual components with each reinforcer, rats were placed on an FR15 60-s timeout multiple schedule of cocaine (0.3 mg/kg/infusion) and sucrose (45 mg pellets) reinforcement or an FR5 60-s timeout multiple schedule of nicotine (0.03 mg/kg/infusion) and sucrose (45 mg pellets) reinforcement. Both cocaine and nicotine maintained significant levels of responding under the multiple schedule. Pretreatment with the dopamine D1 antagonist SCH 23390 increased cocaine-maintained responding, but not sucrose responding. Acute pretreatment with the nicotinic antagonist mecamylamine or SCH 23390 specifically decreased nicotine self-administration. Extinction of the individual nicotine and sucrose components resulted in decreases in responding in each component under extinction. These results indicate that i.v. nicotine maintains responding under a multiple schedule. This procedure may be useful when studying the specificity of drug pretreatments on nicotine self-administration.


Journal of Neurochemistry | 2013

Effects of VMAT2 inhibitors lobeline and GZ‐793A on methamphetamine‐induced changes in dopamine release, metabolism and synthesis in vivo

Andrew C. Meyer; Nichole M. Neugebauer; Guangrong Zheng; Peter A. Crooks; Linda P. Dwoskin; Michael T. Bardo

Vesicular monoamine transporter‐2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N‐(1,2R‐dihydroxylpropyl)‐2,6‐cis‐di(4‐methoxyphenethyl)piperidine hydrochloride (GZ‐793A; 15 or 30 mg/kg) on METH‐induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward‐relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ‐793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time‐dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ‐793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ‐793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH‐induced increase in extracellular DA. Both LOB and GZ‐793A enhanced the duration of the METH‐induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ‐793A decreased synthesis; no effect of METH or GZ‐793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time‐dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ‐793A to decrease METH reward.


Neuropsychopharmacology | 2012

Previous Exposure to Nicotine Enhances the Incentive Motivational Effects of Amphetamine via Nicotine-Associated Contextual Stimuli

James J. Cortright; Georgia R. Sampedro; Nichole M. Neugebauer; Paul Vezina

The effect of nicotine exposure on the subsequent self-administration of amphetamine, extinction of this behavior, and amphetamine-induced reinstatement of drug seeking was assessed with particular attention to the contribution of contextual stimuli paired or unpaired with nicotine during exposure. Rats were exposed to five injections, one injection every third day, of either saline or nicotine (0.4 mg/kg, IP, base) in three experiments. In one, exposure injections were administered in the home cage. In another, they were administered in the self-administration chambers with the levers retracted. In a third, nicotine was administered either explicitly paired or unpaired with the self-administration chambers using a discrimination learning procedure. Starting 13–15 days later, rats were trained to self-administer amphetamine (100 μg/kg/infusion, IV), tested under a progressive ratio (PR) schedule for 6 days, subjected to up to 20 days of extinction training, and were then tested for reinstatement by non-contingent injections of amphetamine (0, 0.2, 0.4, and 0.75 mg/kg, IP). Nicotine enhanced the self-administration of amphetamine under the PR schedule and amphetamine-induced reinstatement but only when rats were tested in the chamber in which they were previously exposed to nicotine. These effects were not observed in rats exposed to nicotine in the home cage or in rats exposed to nicotine explicitly unpaired with the self-administration chambers. Exposure to nicotine also rendered rats resistant to extinction when amphetamine was withheld but this effect was observed regardless of nicotine exposure context, suggesting a separate consequence of drug exposure. Together, these results show that previous exposure to nicotine can enhance the incentive motivational effects of other psychostimulants like amphetamine and indicate a critical role for nicotine-associated contextual stimuli in the mediation of this effect. These findings have important implications for the treatment of addictions in humans.

Collaboration


Dive into the Nichole M. Neugebauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Crooks

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenfa Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangrong Zheng

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge