Nick Bezhanishvili
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nick Bezhanishvili.
Logical Methods in Computer Science | 2011
Nick Bezhanishvili; Mai Gehrke
Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods.
Mathematical Structures in Computer Science | 2010
Guram Bezhanishvili; Nick Bezhanishvili; David Gabelaia; Alexander Kurz
We introduce pairwise Stone spaces as a bitopological generalisation of Stone spaces – the duals of Boolean algebras – and show that they are exactly the bitopological duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important in the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, thereby providing two new alternatives to Esakias duality.
workshop on logic language information and computation | 2012
Nick Bezhanishvili; Clemens Kupke; Prakash Panangaden
We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object.
Review of Symbolic Logic | 2009
Guram Bezhanishvili; Nick Bezhanishvili
We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧,→) homomorphisms, (∧,→, 0) homomorphisms, and (∧,→,∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s theorem that each intermediate logic can be axiomatized by canonical formulas. §
Studia Logica | 2012
Johan van Benthem; Nick Bezhanishvili; Ian M. Hodkinson
We define analogues of modal Sahlqvist formulas for the modal mu-calculus, and prove a correspondence theorem for them.
conference on algebra and coalgebra in computer science | 2007
Nick Bezhanishvili; Alexander Kurz
In this paper we discuss a uniform method for constructing free modal and distributive modal algebras. This method draws on works by (Abramsky 2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic and derive a normal form representation for positive modal logic. We also show that every finitely generated free modal and distributive modal algebra axiomatised by equations of rank 1 is a reduct of a temporal algebra.
Order | 2008
Guram Bezhanishvili; Nick Bezhanishvili
For a Heyting algebra A, we show that the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely join-prime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset X. We also show that A is isomorphic to its profinite completion iff A is finitely approximable, complete, and the kernel of every finite homomorphic image of A is a principal filter of A.
Journal of Symbolic Logic | 2016
Guram Bezhanishvili; Nick Bezhanishvili; Rosalie Iemhoff
We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable canonical rules. We also define stable multi-conclusion consequence relations and stable logics and prove that these systems have the finite model property. We conclude the paper with a number of examples of stable and nonstable systems, and show how to axiomatize them.
Journal of Logic and Computation | 2015
Guram Bezhanishvili; Nick Bezhanishvili; John Harding
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries dualities for compact Hausdorff spaces, as well as the duality between modal spaces and modal algebras. As the first step in the logical treatment of modal compact Hausdorff spaces, a version of Sahlqvist correspondence is given for the positive modal language.
theorem proving with analytic tableaux and related methods | 2013
Nick Bezhanishvili; Silvio Ghilardi
The longstanding research line investigating free algebra constructions in modal logic from an algebraic and coalgebraic point of view recently lead to the notion of a one-step frame [14], [8]. A one-step frame is a two-sorted structure which admits interpretations of modal formulae without nested modal operators. In this paper, we exploit the potential of one-step frames for investigating proof-theoretic aspects. This includes developing a method which detects when a specific rule-based calculus Ax axiomatizing a given logic L has the so-called bounded proof property. This property is a kind of an analytic subformula property limiting the proof search space. We define conservative one-step frames and prove that every finite conservative one-step frame for Ax is a p-morphic image of a finite Kripke frame for L iff Ax has the bounded proof property and L has the finite model property. This result, combined with a ‘one-step version’ of the classical correspondence theory, turns out to be quite powerful in applications. For simple logics such as K, T, K4, S4, etc, establishing basic metatheoretical properties becomes a completely automatic task (the related proof obligations can be instantaneously discharged by current first-order provers). For more complicated logics, some ingenuity is needed, however we successfully applied our uniform method to Avron’s cut-free system for GL and to Gore’s cut-free system for S4.3.